Select the correct answer.

Which expression is equivalent to [tex]$y^{\frac{2}{5}}$[/tex], if [tex]$y \neq 0$[/tex]?

A. [tex][tex]$\sqrt[5]{2 y}$[/tex][/tex]
B. [tex]$\sqrt[5]{y^2}$[/tex]
C. [tex]$\sqrt{y^5}$[/tex]
D. [tex][tex]$2 \sqrt[5]{y}$[/tex][/tex]



Answer :

To determine which expression is equivalent to [tex]\( y^{\frac{2}{5}} \)[/tex], we need to use the properties of exponents and radicals.

1. Understanding Exponential Expressions:
- The given expression is [tex]\( y^{\frac{2}{5}} \)[/tex].

2. Rewriting the Exponent:
- We know that an expression in the form of [tex]\( a^{\frac{m}{n}} \)[/tex] can be rewritten using radicals. Specifically, [tex]\( a^{\frac{m}{n}} \)[/tex] is the same as the [tex]\( n \)[/tex]-th root of [tex]\( a^m \)[/tex]. Mathematically, this is written as:
[tex]\[ a^{\frac{m}{n}} = \sqrt[n]{a^m} \][/tex]

3. Applying this to [tex]\( y^{\frac{2}{5}} \)[/tex]:
- Using the property above, let’s rewrite [tex]\( y^{\frac{2}{5}} \)[/tex]:
[tex]\[ y^{\frac{2}{5}} = \sqrt[5]{y^2} \][/tex]

4. Comparing with Given Options:
- Let’s compare [tex]\( \sqrt[5]{y^2} \)[/tex] with the available options:

A. [tex]\( \sqrt[5]{2y} \)[/tex] indicates the fifth root of [tex]\( 2y \)[/tex], which is not equivalent to [tex]\( y^{\frac{2}{5}} \)[/tex].

B. [tex]\( \sqrt[5]{y^2} \)[/tex] is exactly the same as [tex]\( y^{\frac{2}{5}} \)[/tex].

C. [tex]\( \sqrt{y^5} \)[/tex] indicates the square root of [tex]\( y^5 \)[/tex], which is not equivalent to [tex]\( y^{\frac{2}{5}} \)[/tex].

D. [tex]\( 2 \sqrt[5]{y} \)[/tex] indicates 2 times the fifth root of [tex]\( y \)[/tex], which is not equivalent to [tex]\( y^{\frac{2}{5}} \)[/tex].

Given these comparisons, the correct answer is:

B. [tex]\( \sqrt[5]{y^2} \)[/tex]

Other Questions