Find an explicit description of Nul [tex]\( A \)[/tex] by listing vectors that span the null space.

[tex]\[ A = \left[\begin{array}{rrrr} 1 & 3 & -4 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right] \][/tex]

A spanning set for Nul [tex]\( A \)[/tex] is [tex]\(\square\)[/tex].
(Use a comma to separate answers as needed.)



Answer :

To find an explicit description of the null space [tex]\( \text{Nul } A \)[/tex] for the matrix [tex]\( A \)[/tex], we can follow these steps:

Given the matrix:
[tex]\[ A = \begin{pmatrix} 1 & 3 & -4 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \][/tex]

We need to find all vectors [tex]\( \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \)[/tex] such that [tex]\( A \vec{x} = \vec{0} \)[/tex]. This translates to solving the equation [tex]\( A \vec{x} = \vec{0} \)[/tex].

Expressing the system in terms of equations, we have:
[tex]\[ \begin{cases} 1x_1 + 3x_2 - 4x_3 + 0x_4 = 0 \\ 0x_1 + 0x_2 + 1x_3 + 0x_4 = 0 \end{cases} \][/tex]

From the second equation, we immediately get:
[tex]\[ x_3 = 0 \][/tex]

Substituting [tex]\( x_3 = 0 \)[/tex] into the first equation, we obtain:
[tex]\[ x_1 + 3x_2 = 0 \][/tex]

Solving for [tex]\( x_1 \)[/tex] in terms of [tex]\( x_2 \)[/tex], we get:
[tex]\[ x_1 = -3x_2 \][/tex]

Thus, the vector [tex]\( \vec{x} \)[/tex] can be written as:
[tex]\[ \vec{x} = \begin{pmatrix} -3x_2 \\ x_2 \\ 0 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]

Next, we consider [tex]\( x_4 \)[/tex] which is free, meaning it can take any value. So we can also write:
[tex]\[ \vec{x} = x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]

Combining these observations, the null space [tex]\( \text{Nul } A \)[/tex] is spanned by the vectors:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]

Therefore, the vectors that span the null space [tex]\( \text{Nul } A \)[/tex] are:
[tex]\[ \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]

So, a spanning set for [tex]\( \text{Nul } A \)[/tex] is:
[tex]\[ \boxed{\begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}} \][/tex]