Answer :
Let's break down and solve the given expression step by step:
1. Initial Expression:
[tex]\[ \frac{81}{6} m \overbrace{\text { Puerta }}^{-\frac{3}{2} m^{-1} m} \][/tex]
2. Simplify the Fraction:
First, we simplify the fraction [tex]\(\frac{81}{6}\)[/tex]:
[tex]\[ \frac{81}{6} = 13.5 \][/tex]
3. Simplify the Exponent Expression:
Next, we focus on the exponent expression:
[tex]\[ -\frac{3}{2} m^{-1} m \][/tex]
Simplify the term [tex]\(m^{-1} m\)[/tex]:
[tex]\[ m^{-1} m = 1 \][/tex]
Therefore, the exponent expression simplifies to:
[tex]\[ -\frac{3}{2} \][/tex]
4. Multiply the Results:
Now, we multiply the simplified fraction by the simplified exponent:
[tex]\[ 13.5 \times -\frac{3}{2} \][/tex]
Simplifying further leads to:
[tex]\[ 13.5 \times -1.5 = -20.25 \][/tex]
Thus, the complete simplified solution to the given expression is:
- The simplified fraction: [tex]\(13.5\)[/tex]
- The simplified exponent: [tex]\(-1.5\)[/tex]
- The final result: [tex]\(-20.25\)[/tex]
So, in summary, the solution to the expression [tex]\(\frac{81}{6} m \overbrace{\text { Puerta }}^{-\frac{3}{2} m^{-1} m}\)[/tex] is:
[tex]\[ (13.5, -1.5, -20.25) \][/tex]
1. Initial Expression:
[tex]\[ \frac{81}{6} m \overbrace{\text { Puerta }}^{-\frac{3}{2} m^{-1} m} \][/tex]
2. Simplify the Fraction:
First, we simplify the fraction [tex]\(\frac{81}{6}\)[/tex]:
[tex]\[ \frac{81}{6} = 13.5 \][/tex]
3. Simplify the Exponent Expression:
Next, we focus on the exponent expression:
[tex]\[ -\frac{3}{2} m^{-1} m \][/tex]
Simplify the term [tex]\(m^{-1} m\)[/tex]:
[tex]\[ m^{-1} m = 1 \][/tex]
Therefore, the exponent expression simplifies to:
[tex]\[ -\frac{3}{2} \][/tex]
4. Multiply the Results:
Now, we multiply the simplified fraction by the simplified exponent:
[tex]\[ 13.5 \times -\frac{3}{2} \][/tex]
Simplifying further leads to:
[tex]\[ 13.5 \times -1.5 = -20.25 \][/tex]
Thus, the complete simplified solution to the given expression is:
- The simplified fraction: [tex]\(13.5\)[/tex]
- The simplified exponent: [tex]\(-1.5\)[/tex]
- The final result: [tex]\(-20.25\)[/tex]
So, in summary, the solution to the expression [tex]\(\frac{81}{6} m \overbrace{\text { Puerta }}^{-\frac{3}{2} m^{-1} m}\)[/tex] is:
[tex]\[ (13.5, -1.5, -20.25) \][/tex]