Answer :

Let's simplify the expression [tex]\(\frac{1}{x-y} - \frac{y}{xy + y^2}\)[/tex].

1. Identify common denominators:

The denominators of our two fractions are [tex]\(x - y\)[/tex] and [tex]\(xy + y^2\)[/tex].

2. Rewrite the second denominator:

Observe that [tex]\(xy + y^2\)[/tex] can be factored:
[tex]\[ xy + y^2 = y(x + y) \][/tex]
Therefore, the expression can be rewritten as:
[tex]\[ \frac{1}{x - y} - \frac{y}{y(x + y)} = \frac{1}{x - y} - \frac{1}{x + y} \][/tex]

3. Find a common denominator:

The common denominator for [tex]\(x-y\)[/tex] and [tex]\(x+y\)[/tex] is [tex]\((x-y)(x+y)\)[/tex].

4. Rewrite each fraction:

Rewrite each fraction with the common denominator:
[tex]\[ \frac{1}{x - y} = \frac{x + y}{(x - y)(x + y)} \][/tex]
[tex]\[ \frac{1}{x + y} = \frac{x - y}{(x - y)(x + y)} \][/tex]

5. Subtract the fractions:

Now subtract the two fractions:
[tex]\[ \frac{x + y}{(x - y)(x + y)} - \frac{x - y}{(x - y)(x + y)} \][/tex]

Combining the numerators:
[tex]\[ \frac{(x + y) - (x - y)}{(x - y)(x + y)} = \frac{x + y - x + y}{(x - y)(x + y)} \][/tex]

Simplify the numerator:
[tex]\[ \frac{2y}{(x - y)(x + y)} \][/tex]

So the simplified form of the expression [tex]\(\frac{1}{x-y} - \frac{y}{xy + y^2}\)[/tex] is:
[tex]\[ \boxed{\frac{2y}{(x - y)(x + y)}} \][/tex]