Evaluate each expression and write the answer in reduced fractions (no mixed numbers).

1. [tex]\frac{2}{3} - \frac{4}{5} \cdot \frac{1}{6}[/tex]



Answer :

Sure, let's evaluate the given expression step by step. The expression given is:

[tex]\[ \frac{2}{3} - \frac{4}{5} \cdot \frac{1}{6} \][/tex]

### Step 1: Handle the multiplication within the expression

First, we need to multiply the fractions [tex]\(\frac{4}{5}\)[/tex] and [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \frac{4}{5} \cdot \frac{1}{6} = \frac{4 \cdot 1}{5 \cdot 6} = \frac{4}{30} \][/tex]

Next, we need to simplify [tex]\(\frac{4}{30}\)[/tex]. The greatest common divisor (GCD) of 4 and 30 is 2, so we divide both the numerator and the denominator by 2:

[tex]\[ \frac{4}{30} = \frac{4 \div 2}{30 \div 2} = \frac{2}{15} \][/tex]

So, we have:

[tex]\[ \frac{4}{5} \cdot \frac{1}{6} = \frac{2}{15} \][/tex]

### Step 2: Perform the subtraction

Now, we subtract [tex]\(\frac{2}{15}\)[/tex] from [tex]\(\frac{2}{3}\)[/tex]:

[tex]\[ \frac{2}{3} - \frac{2}{15} \][/tex]

### Step 3: Find a common denominator

To subtract these fractions, we need a common denominator. The least common multiple (LCM) of 3 and 15 is 15. Therefore, we convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 15:

[tex]\[ \frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15} \][/tex]

So, the expression now is:

[tex]\[ \frac{10}{15} - \frac{2}{15} \][/tex]

### Step 4: Perform the subtraction

Since the denominators are the same, we can subtract the numerators directly:

[tex]\[ \frac{10}{15} - \frac{2}{15} = \frac{10 - 2}{15} = \frac{8}{15} \][/tex]

### Conclusion

Therefore, the result of the expression [tex]\(\frac{2}{3} - \frac{4}{5} \cdot \frac{1}{6}\)[/tex] is:

[tex]\[ \frac{8}{15} \][/tex]