Answer :
To solve the problem [tex]\(480,000 \times 0.0019\)[/tex] using scientific notation, let's follow these steps in detail:
1. Convert the numbers to scientific notation:
- [tex]\(480,000\)[/tex] can be written as [tex]\(4.8 \times 10^5\)[/tex].
- [tex]\(0.0019\)[/tex] can be written as [tex]\(1.9 \times 10^{-3}\)[/tex].
2. Multiply the coefficients:
- Multiply [tex]\(4.8\)[/tex] and [tex]\(1.9\)[/tex]:
[tex]\[ 4.8 \times 1.9 = 9.12 \][/tex]
3. Combine the powers of ten:
- The exponent part involves adding the exponents:
[tex]\[ 10^5 \times 10^{-3} = 10^{5-3} = 10^2 \][/tex]
4. Combine the results:
- The final result can be expressed by combining the coefficient and the power of ten:
[tex]\[ 9.12 \times 10^2 \][/tex]
5. Round the coefficient to one decimal place:
- Rounding [tex]\(9.12\)[/tex] to one decimal place, we get:
[tex]\[ 9.1 \][/tex]
So, the final result in scientific notation is:
[tex]\[ 9.1 \times 10^2 \][/tex]
Thus, [tex]\(480,000 \times 0.0019\)[/tex] in scientific notation, rounded to one decimal place, is [tex]\(9.1 \times 10^2\)[/tex].
1. Convert the numbers to scientific notation:
- [tex]\(480,000\)[/tex] can be written as [tex]\(4.8 \times 10^5\)[/tex].
- [tex]\(0.0019\)[/tex] can be written as [tex]\(1.9 \times 10^{-3}\)[/tex].
2. Multiply the coefficients:
- Multiply [tex]\(4.8\)[/tex] and [tex]\(1.9\)[/tex]:
[tex]\[ 4.8 \times 1.9 = 9.12 \][/tex]
3. Combine the powers of ten:
- The exponent part involves adding the exponents:
[tex]\[ 10^5 \times 10^{-3} = 10^{5-3} = 10^2 \][/tex]
4. Combine the results:
- The final result can be expressed by combining the coefficient and the power of ten:
[tex]\[ 9.12 \times 10^2 \][/tex]
5. Round the coefficient to one decimal place:
- Rounding [tex]\(9.12\)[/tex] to one decimal place, we get:
[tex]\[ 9.1 \][/tex]
So, the final result in scientific notation is:
[tex]\[ 9.1 \times 10^2 \][/tex]
Thus, [tex]\(480,000 \times 0.0019\)[/tex] in scientific notation, rounded to one decimal place, is [tex]\(9.1 \times 10^2\)[/tex].