\begin{tabular}{|c|c|c|}
\hline
& [tex]$6^{\prime}$[/tex] or over & Under [tex]$6^{\prime}$[/tex] \\
\hline
Male & 12 & 86 \\
\hline
Female & 3 & \\
\hline
\end{tabular}

Which two-way frequency table correctly shows the marginal frequencies?

A.
\begin{tabular}{|c|c|c|c|}
\hline
& \begin{tabular}{c}
[tex]$6^{\prime}$[/tex] or \\
over
\end{tabular} & \begin{tabular}{c}
Under \\
[tex]$6^{\prime}$[/tex]
\end{tabular} & Total \\
\hline
Male & 12 & 86 & 98 \\
\hline
Female & 3 & 99 & 102 \\
\hline
Total & 15 & 185 & 200 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|}
\hline
& \begin{tabular}{c}
[tex]$6^{\prime}$[/tex] or \\
over
\end{tabular} & \begin{tabular}{c}
Under \\
[tex]$6^{\prime}$[/tex]
\end{tabular} & Total \\
\hline
Male & 12 & 86 & 100 \\
\hline
Female & 3 & 97 & 100 \\
\hline
Total & 15 & 183 & 198 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|}
\hline
& \begin{tabular}{c}
[tex]$6^{\prime}$[/tex] or \\
over
\end{tabular} & \begin{tabular}{c}
Under \\
[tex]$6^{\prime}$[/tex]
\end{tabular} & Total \\
\hline
Male & 12 & 86 & 98 \\
\hline
Female & 3 & 94 & 97 \\
\hline
Total & 15 & 180 & 195 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|}
\hline
& \begin{tabular}{c}
[tex]$6^{\prime}$[/tex] or \\
over
\end{tabular} & \begin{tabular}{c}
Under \\
[tex]$6^{\prime}$[/tex]
\end{tabular} & Total \\
\hline
Male & 12 & 86 & 98 \\
\hline
Female & 3 & 97 & 100 \\
\hline
Total & 15 & 183 & 198 \\
\hline
\end{tabular}

Which option is correct?



Answer :

To determine which two-way frequency table correctly shows the marginal frequencies, let's break down the problem step by step while analyzing the given data and the options provided.

1. Given Data:
- Males who are 6' or over: 12
- Males who are under 6': 86
- Females who are 6' or over: 3
- Females who are under 6': (missing)

First, we need to calculate the missing value for females who are under 6'.

2. Calculate the Total for Females Under 6':
- We should summarize all entries to verify:

Let's assume [tex]\( \text{Number of Females under 6'} = x \)[/tex].

3. Determine the Totals:
- Let's verify the totals provided in the options against our marginal frequencies and ensure we are accurate.

a. Option A Calculation:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & \text{6' or over} & \text{Under 6'} & \text{Total} \\ \hline \text{Male} & 12 & 86 & 98 \\ \hline \text{Female} & 3 & 99 & 102 \\ \hline \text{Total} & 15 & 185 & 200 \\ \hline \end{tabular} \][/tex]

Total males (12 + 86 = 98) matches with given totals.
Total females (3 + 99 = 102) matches with given totals.
Total for 6' or over (12 + 3 = 15) matches with given totals.
Total for under 6' (86 + 99 = 185) matches with given totals.
Grand total (98 + 102 = 200) matches with the overall total.
This matches perfectly with the proper distribution of marginal totals.

b. Option B Calculation:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & \text{6' or over} & \text{Under 6'} & \text{Total} \\ \hline \text{Male} & 12 & 86 & 100 \\ \hline \text{Female} & 3 & 97 & 100 \\ \hline \text{Total} & 15 & 185 & 200 \\ \hline \end{tabular} \][/tex]

Here, Total males (12 + 86 = 98) does not match given total of 100.
Total females (3 + 97 = 100) matches the given total.
So, it is evident that the marginal totals aren’t aligning logically with the individual category totals.

4. Choice: After carefully analyzing and calculating, we find that the marginal frequencies are reflected accurately in Option A:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline & 6' or over & Under 6' & Total \\ \hline Male & 12 & 86 & 98 \\ \hline Female & 3 & 99 & 102 \\ \hline Total & 15 & 185 & 200 \\ \hline \end{tabular} \][/tex]

Thus, the correct option is A.