Answer :
To solve the given problem, we need to determine the area of the base of a cylindrical pillar, given the volume and height.
Here are the steps to find the solution:
1. Understand the Formula: We know that the volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = A \times h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( A \)[/tex] is the area of the base, and [tex]\( h \)[/tex] is the height.
2. Given Values: From the problem, we have:
[tex]\[ V = 324 \text{ cubic centimeters} \][/tex]
[tex]\[ h = 9 \text{ centimeters} \][/tex]
3. Rearrange the Formula: To find the area of the base [tex]\( A \)[/tex], we can rearrange the formula:
[tex]\[ A = \frac{V}{h} \][/tex]
4. Substitute the Given Values: Substitute the given volume and height into the formula:
[tex]\[ A = \frac{324}{9} \][/tex]
5. Calculate: Perform the division:
[tex]\[ A = 36 \text{ square centimeters} \][/tex]
Thus, the area of the base of the pillar is [tex]\( \boxed{36} \)[/tex] square centimeters.
Here are the steps to find the solution:
1. Understand the Formula: We know that the volume [tex]\( V \)[/tex] of a cylinder can be calculated using the formula:
[tex]\[ V = A \times h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( A \)[/tex] is the area of the base, and [tex]\( h \)[/tex] is the height.
2. Given Values: From the problem, we have:
[tex]\[ V = 324 \text{ cubic centimeters} \][/tex]
[tex]\[ h = 9 \text{ centimeters} \][/tex]
3. Rearrange the Formula: To find the area of the base [tex]\( A \)[/tex], we can rearrange the formula:
[tex]\[ A = \frac{V}{h} \][/tex]
4. Substitute the Given Values: Substitute the given volume and height into the formula:
[tex]\[ A = \frac{324}{9} \][/tex]
5. Calculate: Perform the division:
[tex]\[ A = 36 \text{ square centimeters} \][/tex]
Thus, the area of the base of the pillar is [tex]\( \boxed{36} \)[/tex] square centimeters.