Use the product rule to multiply.

[tex]\[
\sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}}
\][/tex]

[tex]\[
\sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} =
\][/tex]

(Simplify your answer. Type an exact answer, using radicals as needed.)



Answer :

Certainly! Let's simplify the given expression using the product rule for radicals.

The given expression is:
[tex]\[ \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \][/tex]

According to the product rule for radicals, [tex]\(\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}\)[/tex]. We can apply this rule to our expression because both radicals have the same index (6th root).

First, identify the expressions under the radicals:
[tex]\[ a = \frac{x}{6}, \quad b = \frac{7}{y} \][/tex]

Now multiply these two expressions inside a single 6th root:
[tex]\[ \sqrt[6]{\left(\frac{x}{6}\right) \cdot \left(\frac{7}{y}\right)} \][/tex]

Next, we multiply the expressions inside the radical:
[tex]\[ \frac{x}{6} \cdot \frac{7}{y} = \frac{x \cdot 7}{6 \cdot y} = \frac{7x}{6y} \][/tex]

Thus, the simplified expression inside the 6th root is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]

Therefore, the simplified result of [tex]\( \sqrt[6]{\frac{x}{6}} \cdot \sqrt[6]{\frac{7}{y}} \)[/tex] is:
[tex]\[ \sqrt[6]{\frac{7x}{6y}} \][/tex]