18. ¿Qué expresiones representan la siguiente situación?

Juan tiene el triple de libros que Enrique menos 3, Enrique tiene la mitad de los libros que Humberto más 5, y Humberto tiene cuatro veces la cantidad de libros de Juan más 2.

A) [tex]J = 3E - 3 \,; \, E = \frac{H}{2} + 5 \,; \, H = 4J + 2[/tex]

B) [tex]J + E + H = 10[/tex]

C) [tex]3J = E \,; \, E = \frac{H}{2} \,; \, H = 4J[/tex]



Answer :

Para resolver este problema, vamos a analizar cada una de las afirmaciones dadas y compararlas con las expresiones proporcionadas en las opciones (A), (B) y (C).

### Análisis de la situación descrita:

1. Juan tiene el triple de libros que Enrique menos 3:
- Esto se puede expresar matemáticamente como:
[tex]\[ J = 3E - 3 \][/tex]

2. Enrique tiene la mitad de los libros que Humberto más 5:
- Esto se puede expresar matemáticamente como:
[tex]\[ E = \frac{H}{2} + 5 \][/tex]

3. Humberto tiene cuatro veces la cantidad de libros de Juan más 2:
- Esto se puede expresar matemáticamente como:
[tex]\[ H = 4J + 2 \][/tex]

Ahora vamos a revisar cada una de las opciones proporcionadas para ver cuál se ajusta a las expresiones deducidas:

### Opción A:
[tex]\[ \begin{align*} J &= 3E - 3 \\ E &= \frac{H}{2} + 5 \\ H &= 4J + 2 \end{align*} \][/tex]

Esta opción coincide exactamente con las expresiones deducidas de la situación descrita. Parecería ser la opción correcta.

### Opción B:
[tex]\[ J + E + H = 10 \][/tex]

Esta opción sugiere que la suma de los libros es igual a 10. No tiene ninguna relación directa con las condiciones dadas inicialmente en la descripción del problema. Así que podemos descartar esta opción.

### Opción C:
[tex]\[ \begin{align*} 3J &= E \\ E &= \frac{H}{2} \\ H &= 4J \end{align*} \][/tex]

Esta opción establece diferentes equivalencias:
- Si [tex]\(3J = E\)[/tex], según la primera ecuación, Enrique tiene el triple de libros que Juan.
- Si [tex]\(E = \frac{H}{2}\)[/tex], según la segunda ecuación, Enrique tiene la mitad de los libros que Humberto.
- Si [tex]\(H = 4J\)[/tex], según la tercera ecuación, Humberto tiene cuatro veces la cantidad de libros que Juan.

Estas relaciones no coinciden con las condiciones derivadas inicialmente de la situación descrita. Así que esta opción también es incorrecta.

### Conclusión:
La opción que representa correctamente las expresiones deducidas de la situación descrita es:

Opción A:
[tex]\[ J = 3E - 3 \\ E = \frac{H}{2} + 5 \\ H = 4J + 2 \][/tex]