Law of Sines: [tex]\frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (Q)}{c}[/tex]

How many distinct triangles can be formed for which [tex]m \angle A = 75^{\circ}[/tex], [tex]a = 2[/tex], and [tex]b = 3[/tex]?

A. No triangles can be formed.
B. One triangle can be formed where angle [tex]B[/tex] is about [tex]15^{\circ}[/tex].
C. One triangle can be formed where angle [tex]B[/tex] is about [tex]40^{\circ}[/tex].
D. Two triangles can be formed where angle [tex]B[/tex] is [tex]40^{\circ}[/tex] or [tex]140^{\circ}[/tex].



Answer :

To determine how many distinct triangles can be formed with the given information [tex]\( m \angle A = 75^{\circ} \)[/tex], [tex]\( a = 2 \)[/tex], and [tex]\( b = 3 \)[/tex], we will use the Law of Sines. The Law of Sines states that:
[tex]\[ \frac{\sin A}{a} = \frac{\sin B}{b} \][/tex]

Step-by-Step Solution:

1. We are given:
- [tex]\( \angle A = 75^\circ \)[/tex]
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]

2. Substitute these values into the Law of Sines:
[tex]\[ \frac{\sin(75^\circ)}{2} = \frac{\sin(B)}{3} \][/tex]

3. Solving for [tex]\( \sin(B) \)[/tex]:
[tex]\[ \sin(B) = 3 \cdot \frac{\sin(75^\circ)}{2} \][/tex]

4. We know that [tex]\( \sin(75^\circ) \approx 0.9659 \)[/tex]:
[tex]\[ \sin B = 3 \cdot \frac{0.9659}{2} = 3 \cdot 0.48295 = 1.44885 \][/tex]

5. Given the range of the sine function is [tex]\(-1 \leq \sin x \leq 1\)[/tex], we see that [tex]\( \sin B = 1.44885 \)[/tex] is not a valid value. Therefore, there is no angle [tex]\( B \)[/tex] that satisfies this equation.

Conclusion:
Since [tex]\( \sin(B) \)[/tex] exceeds the maximum possible value of 1, it indicates that no valid angle [tex]\( B \)[/tex] can be formed and thus no triangle can be constructed with the given parameters.

Hence, no triangles can be formed.