The table of values gives two points that lie on a line. Use the points to find the slope and [tex]\( y \)[/tex]-intercept of the line. Then use these values to write an equation of the line in slope-intercept form.

[tex]\[
\begin{array}{c|c}
x & y \\
\hline
4 & 1 \\
0 & 8 \\
\end{array}
\][/tex]

A. [tex]\( y = \frac{3}{8} x + 8 \)[/tex]

B. [tex]\( y = -\frac{3}{8} x + 8 \)[/tex]

C. [tex]\( y = \frac{7}{4} x + 8 \)[/tex]

D. [tex]\( y = -\frac{7}{4} x + 8 \)[/tex]



Answer :

Sure, let's find the slope and y-intercept for the line passing through the points provided in the table.

The points given are:
- [tex]\( (4, 1) \)[/tex]
- [tex]\( (0, 8) \)[/tex]

### Step-by-Step Solution:

1. Finding the Slope ([tex]\( m \)[/tex]):
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Using our points [tex]\( (4, 1) \)[/tex] and [tex]\( (0, 8) \)[/tex]:
[tex]\[ m = \frac{8 - 1}{0 - 4} = \frac{7}{-4} = -\frac{7}{4} \][/tex]

2. Finding the Y-Intercept ([tex]\( b \)[/tex]):
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the y-intercept. To find [tex]\( b \)[/tex], we can use one of the points and the slope we just calculated. Let's use the point [tex]\( (4, 1) \)[/tex]:
[tex]\[ y = -\frac{7}{4}x + b \][/tex]
Substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 1 \)[/tex]:
[tex]\[ 1 = -\frac{7}{4}(4) + b \][/tex]
[tex]\[ 1 = -7 + b \][/tex]
Now solve for [tex]\( b \)[/tex]:
[tex]\[ b = 1 + 7 = 8 \][/tex]

3. Writing the Equation:
Now that we have both the slope and the y-intercept, we can write the equation of the line in slope-intercept form:
[tex]\[ y = -\frac{7}{4}x + 8 \][/tex]

Out of the given options, the correct equation of the line is:
[tex]\[ y = -\frac{7}{4} x + 8 \][/tex]