53. Evaluate the integral [tex]\int(4 \sqrt{x}+5) \, dx[/tex]:

A. [tex]\frac{8}{3} x^{5 / 2}+5 x + C[/tex]
B. [tex]\frac{2}{\sqrt{x}} + C[/tex]
C. [tex]\frac{8}{3} x^{5 / 2}+5 x + C[/tex]
D. [tex]\frac{8}{3} x^{3 / 2}+5 x + C[/tex]



Answer :

To solve the integral [tex]\(\int (4 \sqrt{x} + 5) \, dx\)[/tex], we need to integrate each term independently.

First, let's rewrite the integral with the integrand separated:
[tex]\[ \int (4 \sqrt{x} + 5) \, dx = \int 4 \sqrt{x} \, dx + \int 5 \, dx \][/tex]

### Step 1: Integrate [tex]\(4 \sqrt{x}\)[/tex]
Recall that [tex]\(\sqrt{x}\)[/tex] can be written as [tex]\(x^{1/2}\)[/tex]. Therefore, we rewrite the term:
[tex]\[ 4 \sqrt{x} = 4 x^{1/2} \][/tex]

To integrate [tex]\(4 x^{1/2}\)[/tex], we use the power rule for integration:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]

In this case, [tex]\(n = 1/2\)[/tex], so:
[tex]\[ \int 4 x^{1/2} \, dx = 4 \int x^{1/2} \, dx = 4 \left( \frac{x^{1/2 + 1}}{1/2 + 1} \right) + C = 4 \left( \frac{x^{3/2}}{3/2} \right) + C \][/tex]

Simplify the fraction:
[tex]\[ 4 \left( \frac{2}{3} x^{3/2} \right) = \frac{8}{3} x^{3/2} \][/tex]

### Step 2: Integrate [tex]\(5\)[/tex]
The integral of a constant is straightforward:
[tex]\[ \int 5 \, dx = 5x \][/tex]

### Step 3: Combine the results
Now we add the results of each integration:
[tex]\[ \int (4 \sqrt{x} + 5) \, dx = \frac{8}{3} x^{3/2} + 5x + C \][/tex]

Upon reviewing the given answer choices, the closest matching choice based on the integral result is:
[tex]\[ (4) \frac{8}{3} x^{3/2} + 5x \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{\frac{8}{3} x^{3/2} + 5 x} \][/tex]