What is the energy of a photon of infrared radiation with a frequency of [tex]$2.53 \times 10^{12} \, \text{Hz}$[/tex]? Planck's constant is [tex]$6.63 \times 10^{-34} \, \text{J} \cdot \text{s}$[/tex].

A. [tex][tex]$1.68 \times 10^{23} \, \text{J}$[/tex][/tex]
B. [tex]$1.68 \times 10^{47} \, \text{J}$[/tex]
C. [tex]$1.68 \times 10^{-21} \, \text{J}$[/tex]
D. [tex][tex]$1.68 \times 10^{-45} \, \text{J}$[/tex][/tex]



Answer :

To find the energy of a photon of infrared radiation with a given frequency, we use the equation derived from Planck’s formula for the energy of a photon:

[tex]\[ E = h \cdot f \][/tex]

where
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant, which is [tex]\( 6.63 \times 10^{-34} \, J \cdot s \)[/tex],
- [tex]\( f \)[/tex] is the frequency of the radiation (given as [tex]\( 2.53 \times 10^{12} \, Hz \)[/tex]).

Plugging in the values:

[tex]\[ E = (6.63 \times 10^{-34} \, J \cdot s) \times (2.53 \times 10^{12} \, Hz) \][/tex]

Performing the multiplication:

[tex]\[ E = 6.63 \times 2.53 \times 10^{-34 + 12} \, J \][/tex]
[tex]\[ E = 16.7739 \times 10^{-22} \, J \][/tex]
[tex]\[ E = 1.67739 \times 10^{-21} \, J \][/tex]

We see that [tex]\( 1.67739 \times 10^{-21} \, J \)[/tex] is very close to [tex]\( 1.68 \times 10^{-21} \, J \)[/tex].

Therefore, the correct answer is:

[tex]\[ \boxed{1.68 \times 10^{-21} \, J} \][/tex]