Given:
[tex]\[ \begin{array}{l}
f(x) = 3x + 5 \\
g(x) = 4x^2 - 2 \\
h(x) = x^2 - 3x + 1
\end{array} \][/tex]

Find [tex]\( f(x) - g(x) - h(x) \)[/tex].

A. [tex]\( 5x^2 + 4 \)[/tex]
B. [tex]\( -5x^2 + 6 \)[/tex]
C. [tex]\( 5x^2 + 6x + 4 \)[/tex]
D. [tex]\( -5x^2 + 6x + 6 \)[/tex]



Answer :

Sure, let's solve the problem step by step:

We are given the functions:
[tex]\[ f(x) = 3x + 5 \][/tex]
[tex]\[ g(x) = 4x^2 - 2 \][/tex]
[tex]\[ h(x) = x^2 - 3x + 1 \][/tex]

Our goal is to find [tex]\( f(x) - g(x) - h(x) \)[/tex].

1. Substitute the expressions for [tex]\( f(x) \)[/tex], [tex]\( g(x) \)[/tex], and [tex]\( h(x) \)[/tex]:
[tex]\[ f(x) - g(x) - h(x) = (3x + 5) - (4x^2 - 2) - (x^2 - 3x + 1) \][/tex]

2. Distribute the negative signs:
[tex]\[ (3x + 5) - 4x^2 + 2 - x^2 + 3x - 1 \][/tex]

3. Combine like terms:

- Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ -4x^2 - x^2 = -5x^2 \][/tex]

- Combine the [tex]\( x \)[/tex] terms:
[tex]\[ 3x + 3x = 6x \][/tex]

- Combine the constant terms:
[tex]\[ 5 + 2 - 1 = 6 \][/tex]

4. Put everything together:
[tex]\[ -5x^2 + 6x + 6 \][/tex]

So, the simplified result is:
[tex]\[ f(x) - g(x) - h(x) = -5x^2 + 6x + 6 \][/tex]

Therefore, the correct answer from the given choices is:
[tex]\[ \boxed{-5x^2 + 6x + 6} \][/tex]