\begin{tabular}{|c|c|}
\hline Employee & Weekly Salary \\
\hline Anja & [tex]$\$[/tex]245[tex]$ \\
\hline Raz & $[/tex]\[tex]$300$[/tex] \\
\hline Natalie & [tex]$\$[/tex]325[tex]$ \\
\hline Mic & $[/tex]\[tex]$465$[/tex] \\
\hline Paul & [tex]$\$[/tex]100[tex]$ \\
\hline
\end{tabular}

What is the variance for the data?

Variance: $[/tex]s^2=\frac{\left(x_1-\bar{x}\right)^2+\left(x_2-\bar{x}\right)^2+\ldots+\left(x_n-\bar{x}\right)^2}{n-1}[tex]$

A. 118.35
B. 132.32
C. 14,006
D. $[/tex]17,507.5$



Answer :

To determine the variance for the given data, we will follow these steps:

1. List the weekly salaries:

[tex]\[ 245, 300, 325, 465, 100 \][/tex]

2. Calculate the mean (average) salary:

The mean [tex]\(\bar{x}\)[/tex] is calculated by adding all the salaries and dividing by the number of salaries.

[tex]\[ \bar{x} = \frac{245 + 300 + 325 + 465 + 100}{5} = \frac{1435}{5} = 287.0 \][/tex]

3. Determine the deviations from the mean for each salary:

[tex]\[ 245 - 287.0 = -42.0 \][/tex]
[tex]\[ 300 - 287.0 = 13.0 \][/tex]
[tex]\[ 325 - 287.0 = 38.0 \][/tex]
[tex]\[ 465 - 287.0 = 178.0 \][/tex]
[tex]\[ 100 - 287.0 = -187.0 \][/tex]

4. Square each deviation:

[tex]\[ (-42.0)^2 = 1764.0 \][/tex]
[tex]\[ (13.0)^2 = 169.0 \][/tex]
[tex]\[ (38.0)^2 = 1444.0 \][/tex]
[tex]\[ (178.0)^2 = 31684.0 \][/tex]
[tex]\[ (-187.0)^2 = 34969.0 \][/tex]

5. Sum the squared deviations:

[tex]\[ 1764.0 + 169.0 + 1444.0 + 31684.0 + 34969.0 = 70130.0 \][/tex]

6. Divide by the number of salaries minus 1 (to get the sample variance):

[tex]\[ s^2 = \frac{70130.0}{5 - 1} = \frac{70130.0}{4} = 17507.5 \][/tex]

Therefore, the variance for the weekly salaries is:

[tex]\[ s^2 = 17507.5 \][/tex]

So, the correct answer from the given choices is [tex]$17,507.5$[/tex].