The table represents a linear function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 8 \\
\hline
-1 & 2 \\
\hline
0 & -4 \\
\hline
1 & -10 \\
\hline
2 & -16 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$-6$[/tex]
B. [tex]$-4$[/tex]
C. [tex]$4$[/tex]
D. [tex]$6$[/tex]



Answer :

To determine the slope of the linear function represented by the table, we must calculate the rate of change between two points on the line. The slope [tex]\( m \)[/tex] of a linear function can be found using the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

We'll use the first two points [tex]\((-2, 8)\)[/tex] and [tex]\((-1, 2)\)[/tex] from the table to find the slope.

1. Identify the coordinates of the first point [tex]\((x_1, y_1)\)[/tex]:
[tex]\[ x_1 = -2, \quad y_1 = 8 \][/tex]

2. Identify the coordinates of the second point [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ x_2 = -1, \quad y_2 = 2 \][/tex]

3. Substitute these values into the slope formula:
[tex]\[ m = \frac{2 - 8}{-1 - (-2)} \][/tex]

4. Simplify the numerator and the denominator:
[tex]\[ m = \frac{-6}{1} \][/tex]

5. Calculate the slope:
[tex]\[ m = -6 \][/tex]

Therefore, the slope of the function is [tex]\( -6 \)[/tex].

From the provided options, [tex]\( -6 \)[/tex], [tex]\( -4 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 6 \)[/tex], the correct slope of the linear function is [tex]\( -6 \)[/tex].