Multiply as indicated. If possible, simplify any radical expressions that appear in the product. Assume that all variables represent positive real numbers.

[tex]\[
\sqrt{6}(x+\sqrt{11})
\][/tex]

Simplify your answer. Type an exact answer, using radicals as needed.



Answer :

To multiply and simplify the given expression [tex]\( \sqrt{6}(x + \sqrt{11}) \)[/tex], follow these steps:

1. Distribute [tex]\( \sqrt{6} \)[/tex] across the terms inside the parenthesis:
[tex]\[ \sqrt{6}(x + \sqrt{11}) = \sqrt{6} \cdot x + \sqrt{6} \cdot \sqrt{11} \][/tex]

2. Simplify the product of radicals:
[tex]\[ \sqrt{6} \cdot x = \sqrt{6}x \][/tex]
[tex]\[ \sqrt{6} \cdot \sqrt{11} = \sqrt{6 \cdot 11} \][/tex]

3. Multiply the numbers inside the second radical:
[tex]\[ \sqrt{6 \cdot 11} = \sqrt{66} \][/tex]

4. Combine the simplified terms into a single expression:
[tex]\[ \sqrt{6}x + \sqrt{66} \][/tex]

So the simplified form of the expression [tex]\( \sqrt{6}(x + \sqrt{11}) \)[/tex] is:
[tex]\[ \sqrt{6}x + \sqrt{66} \][/tex]

This is the exact answer, using radicals as needed.