Find the weight of seeds received by each farmer.

W. A train covers [tex]383 \frac{4}{5} \text{ km}[/tex] in [tex]4 \frac{3}{4}[/tex] hours. Find its average speed.



Answer :

To determine the average speed of a train that covers [tex]\(383 \frac{4}{5} \, \text{km}\)[/tex] in [tex]\(4 \frac{3}{4} \, \text{hours}\)[/tex], follow these steps:

### Step 1: Convert the mixed numbers to improper fractions
- We need to convert [tex]\(383 \frac{4}{5}\)[/tex] km into an improper fraction.
[tex]\[ 383 \frac{4}{5} = 383 + \frac{4}{5} \][/tex]
Converting 383 into a fraction:
[tex]\[ 383 = \frac{383 \times 5}{5} = \frac{1915}{5} \][/tex]
Adding [tex]\(\frac{4}{5}\)[/tex]:
[tex]\[ 383 \frac{4}{5} = \frac{1915 + 4}{5} = \frac{1919}{5} \][/tex]
Converting back into a decimal:
[tex]\[ 383 \frac{4}{5} = 383.8 \][/tex]

- Similarly, convert [tex]\(4 \frac{3}{4}\)[/tex] hours into an improper fraction.
[tex]\[ 4 \frac{3}{4} = 4 + \frac{3}{4} \][/tex]
Converting 4 into a fraction:
[tex]\[ 4 = \frac{4 \times 4}{4} = \frac{16}{4} \][/tex]
Adding [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ 4 \frac{3}{4} = \frac{16 + 3}{4} = \frac{19}{4} \][/tex]
Converting back into a decimal:
[tex]\[ 4 \frac{3}{4} = 4.75 \][/tex]

### Step 2: Calculate the average speed
The formula for average speed is:
[tex]\[ \text{Average speed} = \frac{\text{Total distance}}{\text{Total time}} \][/tex]
Substituting the values:
[tex]\[ \text{Average speed} = \frac{383.8 \, \text{km}}{4.75 \, \text{hours}} \][/tex]

### Step 3: Division to find the result
Dividing the total distance by the total time gives us:
[tex]\[ \text{Average speed} = 80.8 \, \text{km/h} \][/tex]

### Summary
The train's average speed is [tex]\(80.8 \, \text{km/h}\)[/tex].