The points [tex]\((0,3)\)[/tex] and [tex]\((1,12)\)[/tex] are solutions of an exponential function. What is the equation of the exponential function?

A) [tex]\(h(x) = 4(3)^x\)[/tex]

B) [tex]\(h(x) = 3(0.25)^x\)[/tex]

C) [tex]\(h(x) = 4\left(\frac{1}{3}\right)^x\)[/tex]

D) [tex]\(h(x) = 3(4)^x\)[/tex]



Answer :

To find the exponential function that goes through the points [tex]\((0,3)\)[/tex] and [tex]\((1,12)\)[/tex], we begin by considering the general form of an exponential function:

[tex]\[ h(x) = a \cdot b^x \][/tex]

We need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] using the given points.

1. Using the point [tex]\((0, 3)\)[/tex]:

Since [tex]\(h(0) = 3\)[/tex]:
[tex]\[ a \cdot b^0 = 3 \implies a \cdot 1 = 3 \implies a = 3 \][/tex]

2. Using the point [tex]\((1, 12)\)[/tex]:

Since [tex]\(h(1) = 12\)[/tex]:
[tex]\[ a \cdot b^1 = 12 \implies 3 \cdot b = 12 \implies b = \frac{12}{3} \implies b = 4 \][/tex]

Now we have the values for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 4 \][/tex]

Thus, the equation of the exponential function is:
[tex]\[ h(x) = 3 \cdot 4^x \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{h(x) = 3(4)^x} \][/tex]

This corresponds to option D.