Use a calculator to solve for [tex]x[/tex] in the equation [tex]2 e^{3x} = 400[/tex]. Round your answer to three decimals.

A. 5.298
B. 5.991
C. 6.397
D. 1.766



Answer :

To solve for [tex]\( x \)[/tex] in the equation [tex]\( 2 e^{3x} = 400 \)[/tex], follow these steps:

1. Isolate the exponential term:
[tex]\[ e^{3x} = \frac{400}{2} = 200 \][/tex]

2. Take the natural logarithm of both sides:
[tex]\[ \ln(e^{3x}) = \ln(200) \][/tex]

Using the property of logarithms that [tex]\( \ln(e^y) = y \)[/tex], we get:
[tex]\[ 3x = \ln(200) \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\ln(200)}{3} \][/tex]

4. Using a calculator, find the natural logarithm of 200:
[tex]\[ \ln(200) \approx 5.298 \][/tex]

5. Divide by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[ x \approx \frac{5.298}{3} \approx 1.766 \][/tex]

Therefore, the solution for [tex]\( x \)[/tex] is approximately [tex]\( 1.766 \)[/tex]. Hence, the answer is:

D) 1.766