[tex]$y$[/tex] is inversely proportional to the square of [tex]$x$[/tex]. A table of values for [tex]$x$[/tex] and [tex]$y$[/tex] is shown.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & 4 & 1 & [tex]$\frac{4}{9}$[/tex] \\
\hline
\end{tabular}

a) Express [tex]$y$[/tex] in terms of [tex]$x$[/tex].

b) Work out the positive value of [tex]$x$[/tex] when [tex]$y = 25$[/tex].



Answer :

Certainly! Let's solve the given problem in a detailed, step-by-step manner.

### Part a) Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].

1. Understanding the relationship:
Since [tex]\( y \)[/tex] is inversely proportional to the square of [tex]\( x \)[/tex], we can write:
[tex]\[ y = \frac{k}{x^2} \][/tex]
where [tex]\( k \)[/tex] is a constant.

2. Finding the constant [tex]\( k \)[/tex]:
We can use any of the given values in the table to find [tex]\( k \)[/tex]. Let's use the first value from the table where [tex]\( x = 1 \)[/tex] and [tex]\( y = 4 \)[/tex].

Substitute [tex]\( x = 1 \)[/tex] and [tex]\( y = 4 \)[/tex] into the equation:
[tex]\[ 4 = \frac{k}{1^2} \][/tex]

3. Solve for [tex]\( k \)[/tex]:
[tex]\[ k = 4 \][/tex]

4. Formulate [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
Substituting [tex]\( k \)[/tex] back into the equation gives:
[tex]\[ y = \frac{4}{x^2} \][/tex]

Thus, we have expressed [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = \frac{4}{x^2} \][/tex]

### Part b) Work out the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex].

1. Set up the equation:
Using the equation derived in part (a), substitute [tex]\( y = 25 \)[/tex]:
[tex]\[ 25 = \frac{4}{x^2} \][/tex]

2. Solve for [tex]\( x^2 \)[/tex]:
Rearrange the equation to solve for [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 = \frac{4}{25} \][/tex]

3. Solve for [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], take the positive square root of both sides:
[tex]\[ x = \sqrt{\frac{4}{25}} \][/tex]
Simplify under the square root:
[tex]\[ x = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5} = 0.4 \][/tex]

Therefore, the positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex] is:
[tex]\[ x = 0.4 \][/tex]

To summarize:
a) [tex]\( y = \frac{4}{x^2} \)[/tex]
b) The positive value of [tex]\( x \)[/tex] when [tex]\( y = 25 \)[/tex] is [tex]\( x = 0.4 \)[/tex].