Type the correct answer in the box.

[tex]\[
\log \frac{14}{3} + \log \frac{11}{5} - \log \frac{22}{15} = \log
\][/tex]



Answer :

Sure, let's solve the given logarithmic expression step by step.

The expression to solve is:
[tex]\[ \log \frac{14}{3} + \log \frac{11}{5} - \log \frac{22}{15} \][/tex]

1. Use the property of logarithms:

The first property we can employ is that the sum of logarithms is equal to the logarithm of the product:
[tex]\[ \log a + \log b = \log (a \cdot b) \][/tex]

Applying this property to the first two terms:
[tex]\[ \log \frac{14}{3} + \log \frac{11}{5} = \log \left(\frac{14}{3} \cdot \frac{11}{5}\right) \][/tex]

2. Simplify the multiplication inside the logarithm:

Perform the multiplication inside the logarithm:
[tex]\[ \frac{14}{3} \cdot \frac{11}{5} = \frac{14 \cdot 11}{3 \cdot 5} = \frac{154}{15} \][/tex]

So the expression now is:
[tex]\[ \log \left(\frac{154}{15}\right) \][/tex]

3. Use another logarithmic property:

The property for subtraction of logarithms is:
[tex]\[ \log a - \log b = \log \left(\frac{a}{b}\right) \][/tex]

Apply this property to the expression:
[tex]\[ \log \left(\frac{154}{15}\right) - \log \left(\frac{22}{15}\right) = \log \left(\frac{\frac{154}{15}}{\frac{22}{15}}\right) \][/tex]

4. Simplify the fraction inside the logarithm:

Simplify the division of fractions:
[tex]\[ \frac{\frac{154}{15}}{\frac{22}{15}} = \frac{154}{15} \cdot \frac{15}{22} = \frac{154 \cdot 15}{15 \cdot 22} = \frac{154}{22} \][/tex]

Therefore, the expression simplifies to:
[tex]\[ \log \left(\frac{154}{22}\right) \][/tex]

5. Further simplify the fraction:

Simplify the fraction inside the logarithm:
[tex]\[ \frac{154}{22} = \frac{154 \div 22}{22 \div 22} = \frac{7}{1} = 7 \][/tex]

So the final result is:
[tex]\[ \log 7 \][/tex]

Therefore:
[tex]\[ \log \frac{14}{3} + \log \frac{11}{5} - \log \frac{22}{15} = \log 7 \][/tex]

The final simplified answer is:
[tex]\[ \log 7 \][/tex]

Other Questions