Use the Factor Theorem to determine whether [tex]\( x-3 \)[/tex] is a factor of [tex]\( P(x) = 2x^3 - 4x^2 - 4x + 5 \)[/tex].

Specifically, evaluate [tex]\( P \)[/tex] at the proper value, and then determine whether [tex]\( x-3 \)[/tex] is a factor.

[tex]\[ P(\square) = \square \][/tex]

[tex]\( x-3 \)[/tex] is a factor of [tex]\( P(x) \)[/tex]

[tex]\( x-3 \)[/tex] is not a factor of [tex]\( P(x) \)[/tex]



Answer :

To determine whether [tex]\( x-3 \)[/tex] is a factor of the polynomial [tex]\( P(x) = 2x^3 - 4x^2 - 4x + 5 \)[/tex] using the Factor Theorem, follow these steps:

1. Understand the Factor Theorem: The Factor Theorem states that [tex]\( x - a \)[/tex] is a factor of a polynomial [tex]\( P(x) \)[/tex] if and only if [tex]\( P(a) = 0 \)[/tex].

2. Identify the Value to Evaluate: Here, we need to check if [tex]\( x - 3 \)[/tex] is a factor. According to the Factor Theorem, this requires us to evaluate the polynomial [tex]\( P(x) \)[/tex] at [tex]\( x = 3 \)[/tex].

3. Evaluate [tex]\( P(3) \)[/tex]:
[tex]\[ P(3) = 2(3)^3 - 4(3)^2 - 4(3) + 5 \][/tex]

4. Compute Each Term:
- Calculate [tex]\( 3^3 \)[/tex]:
[tex]\[ 3^3 = 27 \][/tex]
- Calculate [tex]\( 2 \times 27 \)[/tex]:
[tex]\[ 2 \times 27 = 54 \][/tex]
- Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
- Calculate [tex]\( 4 \times 9 \)[/tex]:
[tex]\[ 4 \times 9 = 36 \][/tex]
- Calculate [tex]\( 4 \times 3 \)[/tex]:
[tex]\[ 4 \times 3 = 12 \][/tex]

5. Substitute and Combine the Terms:
[tex]\[ P(3) = 54 - 36 - 12 + 5 \][/tex]

6. Perform the Arithmetic:
[tex]\[ 54 - 36 = 18 \][/tex]
[tex]\[ 18 - 12 = 6 \][/tex]
[tex]\[ 6 + 5 = 11 \][/tex]

Thus, [tex]\( P(3) = 11 \)[/tex].

7. Apply the Factor Theorem:
Since [tex]\( P(3) = 11 \neq 0 \)[/tex], according to the Factor Theorem, [tex]\( x - 3 \)[/tex] is not a factor of [tex]\( P(x) \)[/tex].

Hence,

[tex]\[ P(3) = 11 \][/tex]

[tex]\[ x-3 \text{ is not a factor of } P(x) \][/tex]