Select the correct answer.

Given the domain [tex]\{-2,2,4\}[/tex], what is the range for the relation [tex]3x + y = 3[/tex]?

A. [tex]\{-9, 3, 9\}[/tex]
B. [tex]\{-3, 9, 15\}[/tex]
C. [tex]\{0, 5, 7\}[/tex]
D. [tex]\{9, -3, -9\}[/tex]



Answer :

To determine the range for the relation [tex]\(3x + y = 3\)[/tex] given the domain [tex]\(\{-2, 2, 4\}\)[/tex], we can follow these steps:

1. Start with the relation [tex]\(3x + y = 3\)[/tex]. We need to solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].

2. Rearrange the equation:
[tex]\[ y = 3 - 3x \][/tex]

3. Substitute each value from the domain [tex]\(\{-2, 2, 4\}\)[/tex] into the equation [tex]\(y = 3 - 3x\)[/tex] to find the corresponding values of [tex]\(y\)[/tex].

- When [tex]\(x = -2\)[/tex]:
[tex]\[ y = 3 - 3(-2) = 3 + 6 = 9 \][/tex]

- When [tex]\(x = 2\)[/tex]:
[tex]\[ y = 3 - 3(2) = 3 - 6 = -3 \][/tex]

- When [tex]\(x = 4\)[/tex]:
[tex]\[ y = 3 - 3(4) = 3 - 12 = -9 \][/tex]

4. Collect the calculated values of [tex]\(y\)[/tex] to form the range:
[tex]\[ \{9, -3, -9\} \][/tex]

Therefore, the range for the relation [tex]\(3x + y = 3\)[/tex] given the domain [tex]\(\{-2, 2, 4\}\)[/tex] is [tex]\(\{9, -3, -9\}\)[/tex].

The correct answer is:

D. [tex]\(\{9, -3, -9\}\)[/tex]