What is the solution to the equation below?

[tex]\[ \log_6 (4x^2) - \log_6 (x) = 2 \][/tex]

A. [tex]\( x = \frac{1}{12} \)[/tex]
B. [tex]\( x = \frac{3}{2} \)[/tex]
C. [tex]\( x = 3 \)[/tex]
D. [tex]\( x = 9 \)[/tex]



Answer :

To solve the given equation:

[tex]\[ \log_6(4x^2) - \log_6(x) = 2 \][/tex]

we can use properties of logarithms to simplify and solve for [tex]\( x \)[/tex]. Follow these steps:

1. Apply the properties of logarithms: Use the property that [tex]\( \log_b(A) - \log_b(B) = \log_b\left(\frac{A}{B}\right) \)[/tex].

[tex]\[ \log_6(4x^2) - \log_6(x) = \log_6\left(\frac{4x^2}{x}\right) \][/tex]

2. Simplify the argument of the logarithm:

[tex]\[ \frac{4x^2}{x} = 4x \][/tex]

So the equation becomes:

[tex]\[ \log_6(4x) = 2 \][/tex]

3. Convert the logarithmic equation to an exponential equation: Use the property that if [tex]\( \log_b(A) = C \)[/tex], then [tex]\( b^C = A \)[/tex].

[tex]\[ 6^2 = 4x \][/tex]

4. Solve for [tex]\( x \)[/tex]:

[tex]\[ 36 = 4x \][/tex]

[tex]\[ x = \frac{36}{4} \][/tex]

[tex]\[ x = 9 \][/tex]

Hence, the solution to the equation [tex]\(\log_6(4x^2) - \log_6(x) = 2\)[/tex] is:

[tex]\[ \boxed{9} \][/tex]