Answer :
Absolutely, let's simplify each of the given expressions step-by-step:
### a) [tex]\(0.36 + 0.85 - 0.9\)[/tex]
1. Add [tex]\(0.36\)[/tex] and [tex]\(0.85\)[/tex]:
[tex]\[ 0.36 + 0.85 = 1.21 \][/tex]
2. Subtract [tex]\(0.9\)[/tex] from the result:
[tex]\[ 1.21 - 0.9 = 0.31 \][/tex]
Therefore:
[tex]\(\boxed{0.31}\)[/tex]
### b) [tex]\(0.58 - 0.74 + 0.2\)[/tex]
1. Subtract [tex]\(0.74\)[/tex] from [tex]\(0.58\)[/tex]:
[tex]\[ 0.58 - 0.74 = -0.16 \][/tex]
2. Add [tex]\(0.2\)[/tex] to the result:
[tex]\[ -0.16 + 0.2 = 0.04 \][/tex]
Therefore:
[tex]\(\boxed{0.04}\)[/tex]
### c) [tex]\(400 - 225.8 - 10.86\)[/tex]
1. Subtract [tex]\(225.8\)[/tex] from [tex]\(400\)[/tex]:
[tex]\[ 400 - 225.8 = 174.2 \][/tex]
2. Subtract [tex]\(10.86\)[/tex] from the result:
[tex]\[ 174.2 - 10.86 = 163.34 \][/tex]
Therefore:
[tex]\(\boxed{163.34}\)[/tex]
### d) [tex]\((0.65 - 0.8) + 1.5\)[/tex]
1. Subtract [tex]\(0.8\)[/tex] from [tex]\(0.65\)[/tex]:
[tex]\[ 0.65 - 0.8 = -0.15 \][/tex]
2. Add [tex]\(1.5\)[/tex] to the result:
[tex]\[ -0.15 + 1.5 = 1.35 \][/tex]
Therefore:
[tex]\(\boxed{1.35}\)[/tex]
### e) [tex]\(15.04 - (2.5 + 3.8)\)[/tex]
1. Add [tex]\(2.5\)[/tex] and [tex]\(3.8\)[/tex]:
[tex]\[ 2.5 + 3.8 = 6.3 \][/tex]
2. Subtract the result from [tex]\(15.04\)[/tex]:
[tex]\[ 15.04 - 6.3 = 8.74 \][/tex]
Therefore:
[tex]\(\boxed{8.74}\)[/tex]
### f) [tex]\(99.9 - (9.99 - 0.999)\)[/tex]
1. Subtract [tex]\(0.999\)[/tex] from [tex]\(9.99\)[/tex]:
[tex]\[ 9.99 - 0.999 = 8.991 \][/tex]
2. Subtract the result from [tex]\(99.9\)[/tex]:
[tex]\[ 99.9 - 8.991 = 90.909 \][/tex]
Therefore:
[tex]\(\boxed{90.909}\)[/tex]
Summarizing all the results:
1. [tex]\(0.36 + 0.85 - 0.9 = 0.31\)[/tex]
2. [tex]\(0.58 - 0.74 + 0.2 = 0.04\)[/tex]
3. [tex]\(400 - 225.8 - 10.86 = 163.34\)[/tex]
4. [tex]\( (0.65 - 0.8) + 1.5 = 1.35\)[/tex]
5. [tex]\(15.04 - (2.5 + 3.8) = 8.74\)[/tex]
6. [tex]\(99.9 - (9.99 - 0.999) = 90.909\)[/tex]
These are the simplified results for each part.
### a) [tex]\(0.36 + 0.85 - 0.9\)[/tex]
1. Add [tex]\(0.36\)[/tex] and [tex]\(0.85\)[/tex]:
[tex]\[ 0.36 + 0.85 = 1.21 \][/tex]
2. Subtract [tex]\(0.9\)[/tex] from the result:
[tex]\[ 1.21 - 0.9 = 0.31 \][/tex]
Therefore:
[tex]\(\boxed{0.31}\)[/tex]
### b) [tex]\(0.58 - 0.74 + 0.2\)[/tex]
1. Subtract [tex]\(0.74\)[/tex] from [tex]\(0.58\)[/tex]:
[tex]\[ 0.58 - 0.74 = -0.16 \][/tex]
2. Add [tex]\(0.2\)[/tex] to the result:
[tex]\[ -0.16 + 0.2 = 0.04 \][/tex]
Therefore:
[tex]\(\boxed{0.04}\)[/tex]
### c) [tex]\(400 - 225.8 - 10.86\)[/tex]
1. Subtract [tex]\(225.8\)[/tex] from [tex]\(400\)[/tex]:
[tex]\[ 400 - 225.8 = 174.2 \][/tex]
2. Subtract [tex]\(10.86\)[/tex] from the result:
[tex]\[ 174.2 - 10.86 = 163.34 \][/tex]
Therefore:
[tex]\(\boxed{163.34}\)[/tex]
### d) [tex]\((0.65 - 0.8) + 1.5\)[/tex]
1. Subtract [tex]\(0.8\)[/tex] from [tex]\(0.65\)[/tex]:
[tex]\[ 0.65 - 0.8 = -0.15 \][/tex]
2. Add [tex]\(1.5\)[/tex] to the result:
[tex]\[ -0.15 + 1.5 = 1.35 \][/tex]
Therefore:
[tex]\(\boxed{1.35}\)[/tex]
### e) [tex]\(15.04 - (2.5 + 3.8)\)[/tex]
1. Add [tex]\(2.5\)[/tex] and [tex]\(3.8\)[/tex]:
[tex]\[ 2.5 + 3.8 = 6.3 \][/tex]
2. Subtract the result from [tex]\(15.04\)[/tex]:
[tex]\[ 15.04 - 6.3 = 8.74 \][/tex]
Therefore:
[tex]\(\boxed{8.74}\)[/tex]
### f) [tex]\(99.9 - (9.99 - 0.999)\)[/tex]
1. Subtract [tex]\(0.999\)[/tex] from [tex]\(9.99\)[/tex]:
[tex]\[ 9.99 - 0.999 = 8.991 \][/tex]
2. Subtract the result from [tex]\(99.9\)[/tex]:
[tex]\[ 99.9 - 8.991 = 90.909 \][/tex]
Therefore:
[tex]\(\boxed{90.909}\)[/tex]
Summarizing all the results:
1. [tex]\(0.36 + 0.85 - 0.9 = 0.31\)[/tex]
2. [tex]\(0.58 - 0.74 + 0.2 = 0.04\)[/tex]
3. [tex]\(400 - 225.8 - 10.86 = 163.34\)[/tex]
4. [tex]\( (0.65 - 0.8) + 1.5 = 1.35\)[/tex]
5. [tex]\(15.04 - (2.5 + 3.8) = 8.74\)[/tex]
6. [tex]\(99.9 - (9.99 - 0.999) = 90.909\)[/tex]
These are the simplified results for each part.