3. What is the complex conjugate of the root [tex]$x = 3i$[/tex]?

A. [tex]$x = 0$[/tex]
B. [tex][tex]$x = -3i$[/tex][/tex]
C. [tex]$x = -3$[/tex]
D. [tex]$x = 3i$[/tex]



Answer :

To determine the complex conjugate of a given complex number, you simply change the sign of the imaginary part while keeping the real part the same.

Given the complex number [tex]\( x = 3i \)[/tex]:

1. Identify the imaginary part: The imaginary part of [tex]\( 3i \)[/tex] is [tex]\( 3i \)[/tex].
2. Change the sign of the imaginary part: The opposite of [tex]\( +3i \)[/tex] is [tex]\( -3i \)[/tex].

Therefore, the complex conjugate of [tex]\( x = 3i \)[/tex] is [tex]\( -3i \)[/tex].

Among the given options, the correct answer is:
[tex]\[ x = -3i \][/tex]