Answer :

To find the value of the expression [tex]\(\frac{8! - 6!}{3!}\)[/tex], let's go through the steps in detail:

1. Calculate [tex]\(8!\)[/tex]:
[tex]\(8!\)[/tex] which is pronounced as "8 factorial," is the product of all positive integers from 1 to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40320 \][/tex]

2. Calculate [tex]\(6!\)[/tex]:
Similarly, [tex]\(6!\)[/tex] is calculated as:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]

3. Calculate [tex]\(3!\)[/tex]:
And [tex]\(3!\)[/tex] is:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]

4. Compute the numerator [tex]\(8! - 6!\)[/tex]:
We subtract [tex]\(6!\)[/tex] from [tex]\(8!\)[/tex]:
[tex]\[ 8! - 6! = 40320 - 720 = 39600 \][/tex]

5. Divide the result by [tex]\(3!\)[/tex]:
Now, we divide the result from step 4 by [tex]\(3!\)[/tex]:
[tex]\[ \frac{8! - 6!}{3!} = \frac{39600}{6} = 6600 \][/tex]

Thus, the value of the expression [tex]\(\frac{8!-6!}{3!}\)[/tex] is:
[tex]\[ \boxed{6600} \][/tex]

Other Questions