Select all the correct answers.

Which expressions are equivalent to the given expression?

[tex]\sqrt{40}[/tex]

A. [tex]40 \frac{1}{2}[/tex]
B. [tex]2 \sqrt{10}[/tex]
C. [tex]5 \sqrt{8}[/tex]
D. [tex]4 \sqrt{10}[/tex]
E. [tex]160^{\frac{1}{2}}[/tex]



Answer :

Certainly! Let's analyze each expression to determine if it is equivalent to [tex]\(\sqrt{40}\)[/tex].

1. First Expression: [tex]\(\sqrt{40}\)[/tex]

We start with the given expression:

[tex]\[ \sqrt{40} \][/tex]

To simplify this, we need to look at the prime factors of 40:

[tex]\[ 40 = 4 \times 10 = 2^2 \times 10 \][/tex]

Therefore,

[tex]\[ \sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10} \][/tex]

So, [tex]\(\sqrt{40} = 2\sqrt{10}\)[/tex]. This means [tex]\(\sqrt{40}\)[/tex] is equivalent to [tex]\(2\sqrt{10}\)[/tex].

2. Second Expression: [tex]\(40 \frac{1}{\frac{1}{2}}\)[/tex]

Simplify the fraction inside the expression:

[tex]\[ \frac{1}{\frac{1}{2}} = 2 \][/tex]

Therefore,

[tex]\[ 40 \times 2 = 80 \][/tex]

Comparing this with our simplified [tex]\(\sqrt{40}\)[/tex]:

[tex]\[ 80 \neq 2\sqrt{10} \][/tex]

So, this expression is not equivalent to [tex]\(\sqrt{40}\)[/tex].

3. Third Expression: [tex]\(2 \sqrt{10}\)[/tex]

We already know from our simplification that:

[tex]\[ \sqrt{40} = 2\sqrt{10} \][/tex]

Therefore, [tex]\(2\sqrt{10}\)[/tex] is equivalent to [tex]\(\sqrt{40}\)[/tex].

4. Fourth Expression: [tex]\(5 \sqrt{8}\)[/tex]

Let's simplify [tex]\(5 \sqrt{8}\)[/tex]:

[tex]\[ 8 = 4 \times 2 = 2^3 \][/tex]

Therefore,

[tex]\[ \sqrt{8} = \sqrt{2^3} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \][/tex]

So,

[tex]\[ 5 \sqrt{8} = 5 \times 2 \sqrt{2} = 10 \sqrt{2} \][/tex]

Comparing this with our simplified [tex]\(\sqrt{40}\)[/tex]:

[tex]\[ 10 \sqrt{2} \neq 2 \sqrt{10} \][/tex]

Hence, this expression is not equivalent to [tex]\(\sqrt{40}\)[/tex].

5. Fifth Expression: [tex]\(4 \sqrt{10}\)[/tex]

Simplifying [tex]\(4 \sqrt{10}\)[/tex] as it is:

[tex]\[ 4 \sqrt{10} \][/tex]

Since we already have:

[tex]\[ 2 \sqrt{10} \neq 4 \sqrt{10} \][/tex]

So, this expression is not equivalent to [tex]\(\sqrt{40}\)[/tex].

6. Sixth Expression: [tex]\(160^{\frac{1}{2}}\)[/tex]

Simplify [tex]\(160^{\frac{1}{2}}\)[/tex]:

[tex]\[ \sqrt{160} \][/tex]

We know:

[tex]\[ 160 = 16 \times 10 = (4^2 \times 10) \][/tex]

So,

[tex]\[ \sqrt{160} = \sqrt{16 \times 10} = \sqrt{16} \times \sqrt{10} = 4\sqrt{10} \][/tex]

Comparing this with our simplified [tex]\(\sqrt{40}\)[/tex]:

[tex]\[ 4 \sqrt{10} \neq 2 \sqrt{10} \][/tex]

Therefore, this expression is not equivalent to [tex]\(\sqrt{40}\)[/tex].

Based on this detailed analysis, the expressions equivalent to [tex]\(\sqrt{40}\)[/tex] are:

[tex]\(2 \sqrt{10}\)[/tex].