What is the domain of the function [tex]y=\sqrt[3]{x}[/tex]?

A. [tex]-\infty\ \textless \ x\ \textless \ \infty[/tex]

B. [tex]0\ \textless \ x\ \textless \ \infty[/tex]

C. [tex]0 \leq x\ \textless \ \infty[/tex]

D. [tex]1 \leq x\ \textless \ \infty[/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex], we need to identify all possible values of [tex]\( x \)[/tex] for which the function is defined.

1. The cube root function, [tex]\( \sqrt[3]{x} \)[/tex], is defined for all real numbers. This means:
- You can take the cube root of any positive number.
- You can take the cube root of zero.
- You can take the cube root of any negative number.

2. Since the cube root function does not have any restrictions on [tex]\( x \)[/tex] — it is defined for every real number — the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] includes all real numbers.

Given the options:

- [tex]\(-\infty < x < \infty\)[/tex]
- [tex]\(0 < x < \infty\)[/tex]
- [tex]\(0 \leq x < \infty\)[/tex]
- [tex]\(1 \leq x < \infty\)[/tex]

The correct option that represents the domain of [tex]\( y = \sqrt[3]{x} \)[/tex] is:

[tex]\[ -\infty < x < \infty \][/tex]

Thus, the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] is all real numbers.