Which expression is equivalent to [tex]$\log_3 \frac{c}{9}$[/tex]?

A. [tex]\log_3 c + \log_3(9)[/tex]
B. [tex]\log_3(9) + \log_3(c)[/tex]
C. [tex]\log_3 c - \log_3(9)[/tex]
D. [tex]\log_3(9) - \log_3(c)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\log _3 \frac{c}{9}\)[/tex], we'll use properties of logarithms, specifically the quotient rule for logarithms. Here's the step-by-step solution:

1. Starting Expression: We begin with [tex]\(\log _3 \frac{c}{9}\)[/tex].

2. Logarithm Quotient Rule: The quotient rule for logarithms states that [tex]\(\log_b \frac{a}{c} = \log_b a - \log_b c\)[/tex]. In this case, our base [tex]\(b\)[/tex] is 3, [tex]\(a\)[/tex] is [tex]\(c\)[/tex], and [tex]\(c\)[/tex] is 9.

3. Apply the Quotient Rule:
[tex]\[ \log _3 \frac{c}{9} = \log _3 c - \log _3(9) \][/tex]

4. Identify Equivalent Expression: The expression [tex]\(\log _3 c - \log _3(9)\)[/tex] matches one of the given choices.

Therefore, the expression equivalent to [tex]\(\log _3 \frac{c}{9}\)[/tex] is:

[tex]\[ \log _3 c - \log _3(9) \][/tex]

So, the correct choice is:
[tex]\[ \log _3 c - \log _3(9) \][/tex]

Thus, among the provided options, the correct answer is:

[tex]\[ \text{\underline{Answer:}} \quad \log _3 c - \log _3(9) \][/tex]