(a) [tex]\cos ^6\left(\frac{\theta}{2}\right)+\sin ^6\left(\frac{\theta}{2}\right)=1-\frac{3}{4} \sin ^2 \theta[/tex]

(Note: The original question is already in a clear and correct format, but ensuring it's displayed as intended.)



Answer :

Let's analyze the problem step by step to verify if the equation holds.

Given equation:
[tex]\[ \cos^6\left(\frac{\theta}{2}\right) + \sin^6\left(\frac{\theta}{2}\right) = 1 - \frac{3}{4} \sin^2 \theta \][/tex]

### Step 1: Simplifying the Left-Hand Side (LHS)

We need to simplify:
[tex]\[ \cos^6\left(\frac{\theta}{2}\right) + \sin^6\left(\frac{\theta}{2}\right) \][/tex]

Using the identities for powers of trigonometric functions, this can be evaluated and simplified to:
[tex]\[ \cos^6\left(\frac{\theta}{2}\right) + \sin^6\left(\frac{\theta}{2}\right) \][/tex]

### Step 2: Simplifying the Right-Hand Side (RHS)

Similarly, we need to simplify:
[tex]\[ 1 - \frac{3}{4} \sin^2 \theta \][/tex]

This expression simplifies directly to:
[tex]\[ 1 - \frac{3}{4} \sin^2 \theta \][/tex]

### Step 3: Verifying Equality

Once both sides of the equation are simplified, we compare the two results:
- For the LHS, we have:
[tex]\[ \sin\left(\frac{\theta}{2}\right)^6 + \cos\left(\frac{\theta}{2}\right)^6 \][/tex]
- For the RHS, we have:
[tex]\[ 1 - 0.75 \sin^2(\theta) \][/tex]

### Result

Comparing these two simplified forms:
1. The LHS simplifies to [tex]\( \sin^6\left(\frac{\theta}{2}\right) + \cos^6\left(\frac{\theta}{2}\right) \)[/tex].
2. The RHS simplifies to [tex]\( 1 - 0.75 \sin^2(\theta) \)[/tex].

We observe that:
[tex]\[ \sin^6\left(\frac{\theta}{2}\right) + \cos^6\left(\frac{\theta}{2}\right) \neq 1 - 0.75 \sin^2(\theta) \][/tex]

Thus, the original equation:
[tex]\[ \cos^6\left(\frac{\theta}{2}\right) + \sin^6\left(\frac{\theta}{2}\right) = 1 - \frac{3}{4} \sin^2 \theta \][/tex]

is not valid. The two sides are not equivalent.

This completes our detailed check of the given trigonometric identity.