Answer :

To solve the inequality [tex]\( |3x - 3| > 12 \)[/tex], we can break it into two separate inequalities, because the absolute value of an expression [tex]\( |A| > B \)[/tex] can be interpreted as either [tex]\( A > B \)[/tex] or [tex]\( A < -B \)[/tex]. Let's proceed step-by-step:

1. Rewrite the absolute value inequality:
[tex]\[ |3x - 3| > 12 \][/tex]
This can be expressed as:
[tex]\[ 3x - 3 > 12 \quad \text{or} \quad 3x - 3 < -12 \][/tex]

2. Solve the first inequality [tex]\(3x - 3 > 12\)[/tex]:
[tex]\[ 3x - 3 > 12 \][/tex]
Add 3 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x > 15 \][/tex]
Divide both sides by 3:
[tex]\[ x > 5 \][/tex]

3. Solve the second inequality [tex]\(3x - 3 < -12\)[/tex]:
[tex]\[ 3x - 3 < -12 \][/tex]
Add 3 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 3x < -9 \][/tex]
Divide both sides by 3:
[tex]\[ x < -3 \][/tex]

4. Combine the solutions:
The solutions to the inequality [tex]\( |3x - 3| > 12 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy either of the two inequalities derived:
[tex]\[ x > 5 \quad \text{or} \quad x < -3 \][/tex]

Therefore, the solution set for the inequality [tex]\( |3x - 3| > 12 \)[/tex] is:
[tex]\[ x \in (-\infty, -3) \cup (5, \infty) \][/tex]

This indicates that [tex]\( x \)[/tex] must be either less than [tex]\(-3\)[/tex] or greater than [tex]\( 5 \)[/tex].