Drag each step and justification to the correct location on the table. Each step and justification can be used more than once, but not all steps and justifications will be used.

Order each step and justification that is needed to solve the equation below.

[tex]\[ \frac{2}{3} y + 15 = 9 \][/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
Steps & Justifications \\
\hline
\frac{2}{3} y + 15 = 9 & Given \\
\hline
\frac{2}{3} y + 15 - 15 = 9 - 15 & Subtraction property of equality \\
\hline
\frac{2}{3} y = -6 & Simplification \\
\hline
\frac{2}{3} y \cdot \frac{3}{2} = -6 \cdot \frac{3}{2} & Multiplication property of equality \\
\hline
y = -9 & Simplification \\
\hline
\end{tabular}
\][/tex]



Answer :

Certainly! Let's break down the equation [tex]\(\frac{2}{3}y + 15 = 9\)[/tex] step-by-step to solve for [tex]\(y\)[/tex].

Here are the steps and justifications:

| Steps | Justifications |
|-----------------------------------------|-----------------------------------------|
| [tex]\(\frac{2}{3}y + 15 = 9\)[/tex] | Given |
| [tex]\(\frac{2}{3}y + 15 - 15 = 9 - 15\)[/tex] | Subtraction property of equality |
| [tex]\(\frac{2}{3}y = -6\)[/tex] | Simplification |
| [tex]\(\frac{2}{3}y \frac{3}{2} = -6 \frac{3}{2}\)[/tex] | Multiplication property of equality |
| [tex]\(y = -9\)[/tex] | Simplification |

So, the fully populated table with the correct steps and justifications is:

| Steps | Justifications |
|-----------------------------------------|-----------------------------------------|
| [tex]\(\frac{2}{3}y + 15 = 9\)[/tex] | Given |
| [tex]\(\frac{2}{3}y + 15 - 15 = 9 - 15\)[/tex] | Subtraction property of equality |
| [tex]\(\frac{2}{3}y = -6\)[/tex] | Simplification |
| [tex]\(\frac{2}{3}y \frac{3}{2} = -6 \frac{3}{2}\)[/tex] | Multiplication property of equality |
| [tex]\(y = -9\)[/tex] | Simplification |