Select the correct answer.

An earthquake registers a 5.6 on the Richter scale. If the reference intensity of this quake was [tex]7.3 \times 10^9[/tex], what was the intensity of the earthquake?

A. [tex]2.70 \times 10^2[/tex]
B. [tex]3.98 \times 10^5[/tex]
C. [tex]1.30 \times 10^9[/tex]
D. [tex]1.97 \times 10^{12}[/tex]
E. [tex]2.91 \times 10^{15}[/tex]



Answer :

To determine the intensity of the earthquake given its magnitude on the Richter scale, we can use the Richter scale formula for an earthquake's intensity.

The Richter scale formula is:
[tex]\[ M = \log_{10}\left(\frac{I}{I_0}\right) \][/tex]

Where:
- [tex]\( M \)[/tex] is the magnitude on the Richter scale (in this case, 5.6).
- [tex]\( I \)[/tex] is the intensity of the earthquake that we want to find.
- [tex]\( I_0 \)[/tex] is the reference intensity.

We need to isolate [tex]\( I \)[/tex] (the intensity) from this equation:

1. Start by expressing the formula in exponential form:
[tex]\[ 10^M = \frac{I}{I_0} \][/tex]

2. Substitute the given values for [tex]\( M \)[/tex] (5.6) and [tex]\( I_0 \)[/tex] ([tex]\( 7.3 \times 10^9 \)[/tex]):
[tex]\[ 10^{5.6} = \frac{I}{7.3 \times 10^9} \][/tex]

3. To solve for [tex]\( I \)[/tex], multiply both sides of the equation by [tex]\( 7.3 \times 10^9 \)[/tex]:
[tex]\[ I = 7.3 \times 10^9 \times 10^{5.6} \][/tex]

4. Calculate the value of [tex]\( 10^{5.6} \)[/tex]. Note this as a key numerical step:
[tex]\[ 10^{5.6} \simeq 398107.17 \][/tex]

5. Plug this value into the equation:
[tex]\[ I = 7.3 \times 10^9 \times 398107.17 \][/tex]

6. Perform the multiplication to find the intensity [tex]\( I \)[/tex]:
[tex]\[ I \approx 2906182345040527.5 \][/tex]

7. Express this number in scientific notation for clarity:
[tex]\[ I \approx 2.91 \times 10^{15} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{2.91 \times 10^{15}} \][/tex]

The correct option among the given choices is:

E. [tex]\( 2.91 \times 10^{15} \)[/tex]