To solve the problem [tex]\( 10^4 \div 10^8 \)[/tex], we'll follow these steps:
### Step-by-Step Solution:
1. Express the division of powers of 10:
[tex]\[
\frac{10^4}{10^8}
\][/tex]
2. Apply the laws of exponents:
When dividing powers of the same base, subtract the exponent of the denominator from the exponent of the numerator:
[tex]\[
\frac{10^a}{10^b} = 10^{a-b}
\][/tex]
3. Subtract the exponents:
[tex]\[
10^4 \div 10^8 = 10^{4-8} = 10^{-4}
\][/tex]
So, the result of [tex]\( 10^4 \div 10^8 \)[/tex] is [tex]\( 10^{-4} \)[/tex].
4. Convert [tex]\( 10^{-4} \)[/tex] to a decimal form:
[tex]\[
10^{-4} = \frac{1}{10^4} = \frac{1}{10000} = 0.0001
\][/tex]
Hence, the result is [tex]\( 0.0001 \)[/tex] or [tex]\( 10^{-4} \)[/tex].
### Final Answer:
The correct choice from the given options is [tex]\( 10^{-4} \)[/tex].