Perform the following operation:

[tex]\[ 10^4 \div 10^8 \][/tex]

A. [tex]\( 10^{32} \)[/tex]
B. [tex]\( 10^{12} \)[/tex]
C. [tex]\( 10^2 \)[/tex]
D. [tex]\( 10^{-4} \)[/tex]



Answer :

To solve the problem [tex]\( 10^4 \div 10^8 \)[/tex], we'll follow these steps:

### Step-by-Step Solution:

1. Express the division of powers of 10:

[tex]\[ \frac{10^4}{10^8} \][/tex]

2. Apply the laws of exponents:

When dividing powers of the same base, subtract the exponent of the denominator from the exponent of the numerator:

[tex]\[ \frac{10^a}{10^b} = 10^{a-b} \][/tex]

3. Subtract the exponents:

[tex]\[ 10^4 \div 10^8 = 10^{4-8} = 10^{-4} \][/tex]

So, the result of [tex]\( 10^4 \div 10^8 \)[/tex] is [tex]\( 10^{-4} \)[/tex].

4. Convert [tex]\( 10^{-4} \)[/tex] to a decimal form:

[tex]\[ 10^{-4} = \frac{1}{10^4} = \frac{1}{10000} = 0.0001 \][/tex]

Hence, the result is [tex]\( 0.0001 \)[/tex] or [tex]\( 10^{-4} \)[/tex].

### Final Answer:

The correct choice from the given options is [tex]\( 10^{-4} \)[/tex].