Complete the following simplification:

[tex]\[ \left[7\left(\cos 30^{\circ} + i \sin 30^{\circ}\right)\right]\left[8\left(\cos 60^{\circ} + i \sin 60^{\circ}\right)\right] = \ldots \left(\cos \_ + i \sin \_\right) \][/tex]

[tex]\[ \left[7\left(\cos 30^{\circ} + i \sin 30^{\circ}\right)\right]\left[8\left(\cos 60^{\circ} + i \sin 60^{\circ}\right)\right] = \square \left(\cos \square^{\circ} + i \sin \square^{\circ}\right) \][/tex]

[tex]\[ = \square^{\circ} + \square i \][/tex]



Answer :

Certainly! Let's tackle the given problem step-by-step.

We have two complex numbers in polar form:
[tex]\[ z_1 = 7\left(\cos 30^\circ + i \sin 30^\circ\right) \][/tex]
[tex]\[ z_2 = 8\left(\cos 60^\circ + i \sin 60^\circ\right) \][/tex]

We want to find the product of these two complex numbers:
[tex]\[ z_1 \times z_2 \][/tex]

When multiplying two complex numbers in polar form, we multiply their magnitudes and add their angles.

### Step 1: Calculate the Magnitude
The magnitude of the product [tex]\( r \)[/tex] is given by:
[tex]\[ r = r_1 \times r_2 \][/tex]
[tex]\[ r = 7 \times 8 \][/tex]
[tex]\[ r = 56 \][/tex]

### Step 2: Calculate the Angle
The angle of the product [tex]\( \theta \)[/tex] is given by:
[tex]\[ \theta = \theta_1 + \theta_2 \][/tex]
[tex]\[ \theta = 30^\circ + 60^\circ \][/tex]
[tex]\[ \theta = 90^\circ \][/tex]

### Step 3: Write the Product in Polar Form
The product in polar form is:
[tex]\[ 56 \left( \cos 90^\circ + i \sin 90^\circ \right) \][/tex]

### Step 4: Expand the Expression
[tex]\[ 56 \left( \cos 90^\circ + i \sin 90^\circ \right) = 56 (\cos 90^\circ + i \sin 90^\circ) \][/tex]

From trigonometric values:
[tex]\[ \cos 90^\circ = 0 \][/tex]
[tex]\[ \sin 90^\circ = 1 \][/tex]

Thus:
[tex]\[ 56 (\cos 90^\circ + i \sin 90^\circ) = 56 (0 + i \cdot 1) = 56i \][/tex]

So, the real part is [tex]\( 0 \)[/tex] and the imaginary part is [tex]\( 56 \)[/tex].

### Step 5: Summary
Finally, we can summarize our results in the required format:
[tex]\[ 56 \left( \cos 90^\circ + i \sin 90^\circ \right) = 0 + 56i \][/tex]

Therefore, we fill the blanks as follows:

[tex]\[ \begin{aligned} &{\left[7\left(\cos 30^\circ + i \sin 30^\circ\right)\right]\left[8\left(\cos 60^\circ + i \sin 60^\circ\right)\right] } \\ &= 56 \left(\cos 90^\circ + i \sin 90^\circ\right) \\ &= 0 + 56i \end{aligned} \][/tex]

So the completed form is:

[tex]\[ \begin{aligned} {\left[7\left(\cos 30^\circ + i \sin 30^\circ\right)\right]\left[8\left(\cos 60^\circ + i \sin 60^\circ\right)\right] } & = \square\left(\cos \square^\circ + i \sin \square^\circ\right) \\ & = \square^\circ + \square i \end{aligned} \][/tex]

[tex]\[ \begin{aligned} {\left[7\left(\cos 30^\circ + i \sin 30^\circ\right)\right]\left[8\left(\cos 60^\circ + i \sin 60^\circ\right)\right] } & = 56\left(\cos 90^\circ + i \sin 90^\circ\right) \\ & = 0 + 56i \end{aligned} \][/tex]