Which is equivalent to [tex]\sqrt[4]{9}^{\frac{1}{2} x}[/tex]?

A. [tex]9^{2 x}[/tex]

B. [tex]9^{\frac{1}{8} x}[/tex]

C. [tex]\sqrt{9}^x[/tex]

D. [tex]\sqrt[6]{9^x}[/tex]



Answer :

To solve the expression [tex]\(\sqrt[4]{9}^{\frac{1}{2} x}\)[/tex], let's break it down step by step to find an equivalent expression.

1. Rewrite the nth-root as a fractional exponent:
[tex]\[ \sqrt[4]{9} = 9^{\frac{1}{4}} \][/tex]
So, the given expression [tex]\(\sqrt[4]{9}^{\frac{1}{2} x}\)[/tex] can be rewritten using this equivalent form:
[tex]\[ \left(9^{\frac{1}{4}}\right)^{\frac{1}{2} x} \][/tex]

2. Apply the power rule for exponents:
The power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] allows us to simplify the nested exponent:
[tex]\[ \left(9^{\frac{1}{4}}\right)^{\frac{1}{2} x} = 9^{\left(\frac{1}{4} \cdot \frac{1}{2} x\right)} \][/tex]

3. Simplify the exponent:
Multiply the exponents inside the power:
[tex]\[ 9^{\left(\frac{1}{4} \cdot \frac{1}{2} x\right)} = 9^{\frac{1}{8} x} \][/tex]

Therefore, the expression [tex]\(\sqrt[4]{9}^{\frac{1}{2} x}\)[/tex] is equivalent to [tex]\(9^{\frac{1}{8} x}\)[/tex].

By comparing this result with the given options:
- [tex]\(9^{2 x}\)[/tex]
- [tex]\(9^{\frac{1}{8} x}\)[/tex]
- [tex]\(\sqrt{9}^x\)[/tex]
- [tex]\(\sqrt[6]{9^x}\)[/tex]

The correct equivalent expression is:
[tex]\[ \boxed{9^{\frac{1}{8} x}} \][/tex]