[tex]$
\begin{array}{r}
\frac{12\left(\cos 220^{\circ}+i \sin 220^{\circ}\right)}{3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)} \\
\frac{12\left(\cos 220^{\circ}+i \sin 220^{\circ}\right)}{3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)}=\square
\end{array}
$[/tex]

Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Type your answer in the form [tex]$a + bi$[/tex].



Answer :

Sure, let's break this down into a step-by-step solution.

Given the expression:

[tex]\[ \frac{12\left(\cos 220^{\circ}+i \sin 220^{\circ}\right)}{3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)} \][/tex]

we need to simplify it.

### Step 1: Simplify the expression

First, let's simplify the coefficients outside the trigonometric terms:

[tex]\[ \frac{12}{3} = 4 \][/tex]

So, the expression becomes:

[tex]\[ 4 \cdot \frac{\left(\cos 220^{\circ} + i \sin 220^{\circ}\right)}{\left(\cos 130^{\circ} + i \sin 130^{\circ}\right)} \][/tex]

### Step 2: Write in exponential form

We know that [tex]\( \cos \theta + i \sin \theta \)[/tex] can be written as [tex]\( e^{i\theta} \)[/tex]. Hence, we can write:

[tex]\[ \cos 220^{\circ} + i \sin 220^{\circ} = e^{i \cdot 220^{\circ}} \][/tex]

[tex]\[ \cos 130^{\circ} + i \sin 130^{\circ} = e^{i \cdot 130^{\circ}} \][/tex]

### Step 3: Use properties of exponents

When dividing complex exponentials, we subtract the exponents:

[tex]\[ \frac{e^{i \cdot 220^{\circ}}}{e^{i \cdot 130^{\circ}}} = e^{i(220^{\circ} - 130^{\circ})} = e^{i \cdot 90^{\circ}} \][/tex]

So now our expression is:

[tex]\[ 4 \cdot e^{i \cdot 90^{\circ}} \][/tex]

### Step 4: Convert back to trigonometric form

We know that:

[tex]\[ e^{i \cdot 90^{\circ}} = \cos 90^{\circ} + i \sin 90^{\circ} \][/tex]

We substitute the values:

[tex]\[ \cos 90^{\circ} = 0 \quad \text{and} \quad \sin 90^{\circ} = 1 \][/tex]

Thus,

[tex]\[ e^{i \cdot 90^{\circ}} = 0 + i \cdot 1 = i \][/tex]

### Step 5: Multiply by 4

Finally, multiply by 4:

[tex]\[ 4 \cdot i = 4i \][/tex]

So the simplified form of the given expression is:

[tex]\[ \boxed{0 + 4i} \][/tex]

Equivalently, the final answer is:

[tex]\[ 0 + 4i \quad \text{or simply} \quad 4i \][/tex]

From this detailed process, the step-by-step answer to the initial problem is [tex]\( \boxed{0 + 4i} \)[/tex] or just [tex]\( \boxed{4i} \)[/tex].