Answer :
To solve this problem, let's analyze the properties and characteristics of a one-to-one function and its inverse.
1. Domain and Range:
- The domain of the original function becomes the range of the inverse function.
- The range of the original function becomes the domain of the inverse function.
2. Intercepts:
- The [tex]\( x \)[/tex]-intercept of the original function, say [tex]\((a, 0)\)[/tex], becomes the [tex]\( y \)[/tex]-intercept of the inverse function, which will be [tex]\((0, a)\)[/tex].
Given the original function:
- Domain: [tex]\( x \geq 2 \)[/tex]
- Range: [tex]\( y \geq -3 \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (11, 0) \)[/tex]
Let's find the corresponding properties for the inverse function:
- Domain of the inverse function: This will be the range of the original function, so we have [tex]\( x \geq -3 \)[/tex].
- Range of the inverse function: This will be the domain of the original function, so we have [tex]\( y \geq 2 \)[/tex].
- [tex]\( y \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept [tex]\( (11, 0) \)[/tex] of the original function becomes the [tex]\( y \)[/tex]-intercept of the inverse function, so we have [tex]\( (0, 11) \)[/tex].
Now, let's match these properties with the given answer choices:
A. Domain: [tex]\( x \geq -3 \)[/tex]; Range: [tex]\( y \geq 2 \)[/tex]; [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]
This matches our calculated properties for the inverse function.
B. Domain: [tex]\( x \geq 3 \)[/tex]; Range: [tex]\( y \geq -2 \)[/tex]; [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]
This does not match our calculated properties.
C. Domain: [tex]\( x \geq -2 \)[/tex]; Range: [tex]\( y \geq 3 \)[/tex]; [tex]\( x \)[/tex]-intercept: [tex]\( (-11, 0) \)[/tex]
This does not match our calculated properties.
D. Domain: [tex]\( x \geq 2 \)[/tex]; Range: [tex]\( y \geq -3 \)[/tex]; [tex]\( x \)[/tex]-intercept: [tex]\( (-11, 0) \)[/tex]
This does not match our calculated properties.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
The inverse function's characteristics are:
- Domain: [tex]\( x \geq -3 \)[/tex]
- Range: [tex]\( y \geq 2 \)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]
1. Domain and Range:
- The domain of the original function becomes the range of the inverse function.
- The range of the original function becomes the domain of the inverse function.
2. Intercepts:
- The [tex]\( x \)[/tex]-intercept of the original function, say [tex]\((a, 0)\)[/tex], becomes the [tex]\( y \)[/tex]-intercept of the inverse function, which will be [tex]\((0, a)\)[/tex].
Given the original function:
- Domain: [tex]\( x \geq 2 \)[/tex]
- Range: [tex]\( y \geq -3 \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( (11, 0) \)[/tex]
Let's find the corresponding properties for the inverse function:
- Domain of the inverse function: This will be the range of the original function, so we have [tex]\( x \geq -3 \)[/tex].
- Range of the inverse function: This will be the domain of the original function, so we have [tex]\( y \geq 2 \)[/tex].
- [tex]\( y \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept [tex]\( (11, 0) \)[/tex] of the original function becomes the [tex]\( y \)[/tex]-intercept of the inverse function, so we have [tex]\( (0, 11) \)[/tex].
Now, let's match these properties with the given answer choices:
A. Domain: [tex]\( x \geq -3 \)[/tex]; Range: [tex]\( y \geq 2 \)[/tex]; [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]
This matches our calculated properties for the inverse function.
B. Domain: [tex]\( x \geq 3 \)[/tex]; Range: [tex]\( y \geq -2 \)[/tex]; [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]
This does not match our calculated properties.
C. Domain: [tex]\( x \geq -2 \)[/tex]; Range: [tex]\( y \geq 3 \)[/tex]; [tex]\( x \)[/tex]-intercept: [tex]\( (-11, 0) \)[/tex]
This does not match our calculated properties.
D. Domain: [tex]\( x \geq 2 \)[/tex]; Range: [tex]\( y \geq -3 \)[/tex]; [tex]\( x \)[/tex]-intercept: [tex]\( (-11, 0) \)[/tex]
This does not match our calculated properties.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
The inverse function's characteristics are:
- Domain: [tex]\( x \geq -3 \)[/tex]
- Range: [tex]\( y \geq 2 \)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, 11) \)[/tex]