Type the correct answer in each box.

If [tex]\cos -105^{\circ}=-0.26[/tex] and [tex]\csc -105^{\circ}=-1.03[/tex], then [tex]\cos 105^{\circ}=\square[/tex] and [tex]\csc 105^{\circ}=\square[/tex].



Answer :

To find the values of [tex]\(\cos 105^\circ\)[/tex] and [tex]\(\csc 105^\circ\)[/tex] given the values of [tex]\(\cos -105^\circ = -0.26\)[/tex] and [tex]\(\csc -105^\circ = -1.03\)[/tex], we can use the properties of trigonometric functions for negative angles. These properties are:

1. [tex]\(\cos(-\theta) = \cos(\theta)\)[/tex]
2. [tex]\(\csc(-\theta) = -\csc(\theta)\)[/tex]

Given:
[tex]\[ \cos(-105^\circ) = -0.26 \][/tex]
Using the identity for cosine of a negative angle:
[tex]\[ \cos 105^\circ = \cos(-105^\circ) \][/tex]
Therefore,
[tex]\[ \cos 105^\circ = -0.26 \][/tex]

Next, given:
[tex]\[ \csc(-105^\circ) = -1.03 \][/tex]
Using the identity for cosecant of a negative angle:
[tex]\[ \csc 105^\circ = -\csc(-105^\circ) \][/tex]
Therefore,
[tex]\[ \csc 105^\circ = 1.03 \][/tex]

So, we have:
[tex]\[ \cos 105^\circ = -0.26 \][/tex]
and
[tex]\[ \csc 105^\circ = 1.03 \][/tex]