The given text appears to be nonsensical and lacks a clear context. Here is a sensible rephrasing and formatting, assuming it's related to a data table task:

---
Reformat the following data table for clarity and accuracy.

Original Table:
[tex]\[
\begin{tabular}{|c|c|c|}
\hline
5 & $I(x)$ & $\Delta(1)$ \\
\hline
1 IOS & \$14.17020 & 51100031 \\
\hline
00 & $510.3 \times 620$ & 316.1 \\
\hline
005 & 524.12220 & S23,TU6 11 \\
\hline
2006 & $125.467 a 0$ & $\operatorname{s25} 6$ \\
\hline
2007 & \$2.71260 & 29,7207 \\
\hline
& 531,93860 & 5 \\
\hline
\end{tabular}
\][/tex]

Instructions:
1. Correct any inconsistencies in numerical or textual data.
2. Ensure all monetary values are formatted correctly.
3. Clarify any ambiguous entries.

Note: If any data is not interpretable, provide a placeholder and indicate the need for further information.

---

Formatted Task:

Reformat the following data table for clarity and accuracy.

Original Table:
[tex]\[
\begin{tabular}{|c|c|c|}
\hline
5 & $I(x)$ & $\Delta(1)$ \\
\hline
1 IOS & \$14.17020 & 51100031 \\
\hline
00 & $510.3 \times 620$ & 316.1 \\
\hline
005 & 524.12220 & S23,TU6 11 \\
\hline
2006 & $125.467 a 0$ & $\operatorname{s25} 6$ \\
\hline
2007 & \$2.71260 & 29,7207 \\
\hline
& 531,93860 & 5 \\
\hline
\end{tabular}
\][/tex]

Instructions:
1. Correct any inconsistencies in numerical or textual data.
2. Ensure all monetary values are formatted correctly.
3. Clarify any ambiguous entries.

Note: If any data is not interpretable, provide a placeholder and indicate the need for further information.



Answer :

Certainly! Let's solve the inequality step by step:

Problem: Solve the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex].

Step 1: Distribute the 4 on the left side.
[tex]\[ 4(3 - x) < 5x + 6 \][/tex]
[tex]\[ 12 - 4x < 5x + 6 \][/tex]

Step 2: Move all terms involving [tex]\(x\)[/tex] to one side. To do this, subtract [tex]\(5x\)[/tex] from both sides.
[tex]\[ 12 - 4x - 5x < 6 \][/tex]
[tex]\[ 12 - 9x < 6 \][/tex]

Step 3: Move the constant term (12) to the other side by subtracting 12 from both sides.
[tex]\[ 12 - 12 - 9x < 6 - 12 \][/tex]
[tex]\[ -9x < -6 \][/tex]

Step 4: Divide by the coefficient of [tex]\(x\)[/tex], which is -9, noting that dividing by a negative number reverses the inequality sign.
[tex]\[ x > \frac{-6}{-9} \][/tex]
[tex]\[ x > \frac{2}{3} \][/tex]

So, the solution to the inequality [tex]\(4(3 - x) < 5x + 6\)[/tex] is [tex]\(x > \frac{2}{3}\)[/tex].

Finally, converting [tex]\(\frac{2}{3}\)[/tex] to its decimal form, we get:
[tex]\[ \frac{2}{3} \approx 0.6666666666666666 \][/tex]

Thus, [tex]\(x > 0.6666666666666666\)[/tex].