Evaluate the value.

21) [tex]\[ |-2| - \frac{|-10|}{2} = \][/tex]

22) [tex]\[ 8 - |2 - 14| - |-2| = \][/tex]

23) [tex]\[ \frac{|-36|}{6} \times |-6| = \][/tex]

24) [tex]\[ \frac{|5 \times -3|}{5} \times \frac{|-20|}{4} = \][/tex]

25) [tex]\[ |2 \times -4| + \frac{|-40|}{5} = \][/tex]

26) [tex]\[ \frac{|-28|}{4} \times \frac{|-55|}{11} = \][/tex]

27) [tex]\[ |-12 + 4| \times \frac{|-4 \times 5|}{2} = \][/tex]

28) [tex]\[ \frac{|-10 \times 3|}{2} \times |-12| = \][/tex]



Answer :

Sure, let's evaluate each of the given expressions step-by-step:

21) [tex]\( |-2| - \frac{| -10 |}{2} \)[/tex]

1. Calculate the absolute values:
[tex]\( |-2| = 2 \)[/tex]
[tex]\( |-10| = 10 \)[/tex]

2. Substitute the absolute values into the expression:
[tex]\( 2 - \frac{10}{2} \)[/tex]

3. Perform the division and subtraction:
[tex]\( 2 - 5 = -3 \)[/tex]

Therefore, the value is [tex]\(-3\)[/tex].

25) [tex]\( |2 \times -4| + \frac{| -40 |}{5} \)[/tex]

1. Calculate the absolute values and multiplication:
[tex]\( 2 \times -4 = -8 \)[/tex]
[tex]\( | -8 | = 8 \)[/tex]
[tex]\( | -40 | = 40 \)[/tex]

2. Substitute these into the expression:
[tex]\( 8 + \frac{40}{5} \)[/tex]

3. Perform the division and addition:
[tex]\( 8 + 8 = 16 \)[/tex]

Therefore, the value is [tex]\( 16 \)[/tex].

22) [tex]\( 8 - |2 - 14| - | -2 | \)[/tex]

1. Calculate the absolute values:
[tex]\( 2 - 14 = -12 \)[/tex]
[tex]\( | -12 | = 12 \)[/tex]
[tex]\( | -2 | = 2 \)[/tex]

2. Substitute these into the expression:
[tex]\( 8 - 12 - 2 \)[/tex]

3. Perform the subtraction:
[tex]\( 8 - 12 = -4 \)[/tex]
[tex]\( -4 - 2 = -6 \)[/tex]

Therefore, the value is [tex]\(-6\)[/tex].

26) [tex]\( \frac{| -28 |}{4} \times \frac{| -55 |}{11} \)[/tex]

1. Calculate the absolute values:
[tex]\( | -28 | = 28 \)[/tex]
[tex]\( | -55 | = 55 \)[/tex]

2. Substitute these into the expression:
[tex]\( \frac{28}{4} \times \frac{55}{11} \)[/tex]

3. Perform the division and multiplication:
[tex]\( 7 \times 5 = 35 \)[/tex]

Therefore, the value is [tex]\( 35 \)[/tex].

23) [tex]\( \frac{|-36|}{6} \times | -6 | \)[/tex]

1. Calculate the absolute values:
[tex]\( |-36| = 36 \)[/tex]
[tex]\( | -6 | = 6 \)[/tex]

2. Substitute these into the expression:
[tex]\( \frac{36}{6} \times 6 \)[/tex]

3. Perform the division and multiplication:
[tex]\( 6 \times 6 = 36 \)[/tex]

Therefore, the value is [tex]\( 36 \)[/tex].

27) [tex]\( | -12 + 4 | \times \frac{| -4 \times 5 |}{2} \)[/tex]

1. Calculate the values inside the absolute and multiplication:
[tex]\( -12 + 4 = -8 \)[/tex]
[tex]\( | -8 | = 8 \)[/tex]
[tex]\( -4 \times 5 = -20 \)[/tex]
[tex]\( | -20 | = 20 \)[/tex]

2. Substitute these into the expression:
[tex]\( 8 \times \frac{20}{2} \)[/tex]

3. Perform the division and multiplication:
[tex]\( \frac{20}{2} = 10 \)[/tex]
[tex]\( 8 \times 10 = 80 \)[/tex]

Therefore, the value is [tex]\( 80 \)[/tex].

24) [tex]\( \frac{| 5 \times -3 |}{5} \times \frac{| -20 |}{4} \)[/tex]

1. Calculate the values and absolute values:
[tex]\( 5 \times -3 = -15 \)[/tex]
[tex]\( | -15 | = 15 \)[/tex]
[tex]\( | -20 | = 20 \)[/tex]

2. Substitute these into the expression:
[tex]\( \frac{15}{5} \times \frac{20}{4} \)[/tex]

3. Perform the division and multiplication:
[tex]\( 3 \times 5 = 15 \)[/tex]

Therefore, the value is [tex]\( 15 \)[/tex].

28) [tex]\( \frac{|-10 \times 3|}{2} \times |-12| \)[/tex]

1. Calculate the values and absolute values:
[tex]\( -10 \times 3 = -30 \)[/tex]
[tex]\( | -30 | = 30 \)[/tex]
[tex]\( | -12 | = 12 \)[/tex]

2. Substitute these into the expression:
[tex]\( \frac{30}{2} \times 12 \)[/tex]

3. Perform the division and multiplication:
[tex]\( 15 \times 12 = 180 \)[/tex]

Therefore, the value is [tex]\( 180 \)[/tex].

To summarize:

21) [tex]\(-3\)[/tex]
25) [tex]\(16\)[/tex]
22) [tex]\(-6\)[/tex]
26) [tex]\(35\)[/tex]
23) [tex]\(36\)[/tex]
27) [tex]\(80\)[/tex]
24) [tex]\(15\)[/tex]
28) [tex]\(180\)[/tex]