Answer :
To determine which statement is true about the values [tex]\( x = -2 \)[/tex] and [tex]\( y = -0.5 \)[/tex], we need to check if these values satisfy the given equations.
The equations provided are:
1. Equation A: [tex]\( 4y - 3x = 4 \)[/tex]
2. Equation B: [tex]\( -2x - 8y = 8 \)[/tex]
Let's verify if the point [tex]\((-2, -0.5)\)[/tex] satisfies each equation.
### Step-by-Step Verification
#### Check Equation A:
Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = -0.5 \)[/tex] into [tex]\( 4y - 3x = 4 \)[/tex]:
[tex]\[ 4(-0.5) - 3(-2) = 4 \][/tex]
[tex]\[ -2 + 6 = 4 \][/tex]
[tex]\[ 4 = 4 \][/tex]
This statement is true, so the point [tex]\((-2, -0.5)\)[/tex] satisfies Equation A.
#### Check Equation B:
Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = -0.5 \)[/tex] into [tex]\( -2x - 8y = 8 \)[/tex]:
[tex]\[ -2(-2) - 8(-0.5) = 8 \][/tex]
[tex]\[ 4 + 4 = 8 \][/tex]
[tex]\[ 8 = 8 \][/tex]
This statement is also true, so the point [tex]\((-2, -0.5)\)[/tex] satisfies Equation B as well.
Since [tex]\((-2, -0.5)\)[/tex] satisfies both equations, the correct statement would be:
B. They are the only values that make both equations true.
Therefore, the appropriate conclusion is:
[tex]\[ (x = -2, y = -0.5) \][/tex] are the values that satisfy both equations [tex]\( 4y - 3x = 4 \)[/tex] and [tex]\( -2x - 8y = 8 \)[/tex], making Statement B the correct answer.
The equations provided are:
1. Equation A: [tex]\( 4y - 3x = 4 \)[/tex]
2. Equation B: [tex]\( -2x - 8y = 8 \)[/tex]
Let's verify if the point [tex]\((-2, -0.5)\)[/tex] satisfies each equation.
### Step-by-Step Verification
#### Check Equation A:
Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = -0.5 \)[/tex] into [tex]\( 4y - 3x = 4 \)[/tex]:
[tex]\[ 4(-0.5) - 3(-2) = 4 \][/tex]
[tex]\[ -2 + 6 = 4 \][/tex]
[tex]\[ 4 = 4 \][/tex]
This statement is true, so the point [tex]\((-2, -0.5)\)[/tex] satisfies Equation A.
#### Check Equation B:
Substitute [tex]\( x = -2 \)[/tex] and [tex]\( y = -0.5 \)[/tex] into [tex]\( -2x - 8y = 8 \)[/tex]:
[tex]\[ -2(-2) - 8(-0.5) = 8 \][/tex]
[tex]\[ 4 + 4 = 8 \][/tex]
[tex]\[ 8 = 8 \][/tex]
This statement is also true, so the point [tex]\((-2, -0.5)\)[/tex] satisfies Equation B as well.
Since [tex]\((-2, -0.5)\)[/tex] satisfies both equations, the correct statement would be:
B. They are the only values that make both equations true.
Therefore, the appropriate conclusion is:
[tex]\[ (x = -2, y = -0.5) \][/tex] are the values that satisfy both equations [tex]\( 4y - 3x = 4 \)[/tex] and [tex]\( -2x - 8y = 8 \)[/tex], making Statement B the correct answer.