The chart shows the times and accelerations for three drivers.

\begin{tabular}{|l|l|l|}
\hline
Driver & Acceleration & Time \\
\hline
Kira & [tex]$5.2 \, \text{m/s}^2$[/tex] & [tex]$6.9 \, \text{sec}$[/tex] \\
\hline
Dustin & [tex]$8.3 \, \text{m/s}^2$[/tex] & [tex]$3 \, \text{sec}$[/tex] \\
\hline
Diego & [tex]$6.5 \, \text{m/s}^2$[/tex] & [tex]$4.2 \, \text{sec}$[/tex] \\
\hline
\end{tabular}

Which lists them from greatest to lowest change in velocity?

A. Dustin [tex]$\rightarrow$[/tex] Diego [tex]$\rightarrow$[/tex] Kira

B. Dustin [tex]$\rightarrow$[/tex] Kira [tex]$\rightarrow$[/tex] Diego

C. Kira [tex]$\rightarrow$[/tex] Dustin [tex]$\rightarrow$[/tex] Diego

D. Kira [tex]$\rightarrow$[/tex] Diego [tex]$\rightarrow$[/tex] Dustin



Answer :

To determine the order of drivers from the greatest to the lowest change in velocity, we need to calculate the change in velocity for each driver. The change in velocity can be calculated using the formula:

[tex]\[ \Delta v = acceleration \times time \][/tex]

Let's calculate the change in velocity for each driver step-by-step:

1. Kira:
[tex]\[ \text{Acceleration} = 5.2 \, m/s^2 \][/tex]
[tex]\[ \text{Time} = 6.9 \, \text{sec} \][/tex]
[tex]\[ \Delta v_{\text{Kira}} = 5.2 \times 6.9 = 35.88 \, m/s \][/tex]

2. Dustin:
[tex]\[ \text{Acceleration} = 8.3 \, m/s^2 \][/tex]
[tex]\[ \text{Time} = 3 \, \text{sec} \][/tex]
[tex]\[ \Delta v_{\text{Dustin}} = 8.3 \times 3 = 24.9 \, m/s \][/tex]

3. Diego:
[tex]\[ \text{Acceleration} = 6.5 \, m/s^2 \][/tex]
[tex]\[ \text{Time} = 4.2 \, \text{sec} \][/tex]
[tex]\[ \Delta v_{\text{Diego}} = 6.5 \times 4.2 = 27.3 \, m/s \][/tex]

After calculating the changes in velocity, we have:
- Kira: 35.88 m/s
- Dustin: 24.9 m/s
- Diego: 27.3 m/s

Now, we need to order these from greatest to lowest change in velocity:

1. Kira: 35.88 m/s
2. Diego: 27.3 m/s
3. Dustin: 24.9 m/s

So, the correct order from greatest to lowest change in velocity is:

Kira → Diego → Dustin

Thus, the correct choice is:
Kira [tex]$\rightarrow$[/tex] Diego [tex]$\rightarrow$[/tex] Dustin