Answer :

To determine the speed of the dog, we will use the formula for kinetic energy. The kinetic energy (KE) of an object is given by the equation:

[tex]\[ KE = \frac{1}{2} \times \text{mass} \times \text{velocity}^2 \][/tex]

In this scenario, we are given:
- The mass ([tex]\(m\)[/tex]) of the dog is 14 kg.
- The kinetic energy ([tex]\(KE\)[/tex]) is 135.5 Joules.

We need to find the velocity ([tex]\(v\)[/tex]). Let's rearrange the kinetic energy equation to solve for velocity:

[tex]\[ KE = \frac{1}{2} \times m \times v^2 \][/tex]

First, multiply both sides of the equation by 2 to get rid of the [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ 2 \times KE = m \times v^2 \][/tex]

Substitute the given values into the equation:

[tex]\[ 2 \times 135.5 = 14 \times v^2 \][/tex]

[tex]\[ 271 = 14 \times v^2 \][/tex]

Next, divide both sides by 14 to solve for [tex]\(v^2\)[/tex]:

[tex]\[ v^2 = \frac{271}{14} \][/tex]

[tex]\[ v^2 = 19.3571 \][/tex]

Now, take the square root of both sides to solve for [tex]\(v\)[/tex]:

[tex]\[ v = \sqrt{19.3571} \][/tex]

[tex]\[ v \approx 4.399675312695569 \][/tex]

Rounding this to one decimal place, we get:

[tex]\[ v \approx 4.4 \text{ m/s} \][/tex]

So the speed of the dog is approximately 4.4 m/s.

Therefore, the correct answer is:

OA. 4.4 m/s