Select the correct answer.

What is the equation for a line that passes through the points [tex]$(5, -3)$[/tex] and [tex]$(-10, 15)$[/tex]?

A. [tex]y = -\frac{6}{5} x - 3[/tex]
B. [tex]y = \frac{6}{5} x - 3[/tex]
C. [tex]y = -\frac{6}{5} x + 3[/tex]
D. [tex]y = \frac{6}{5} x + 3[/tex]



Answer :

To determine the equation of the line passing through the points [tex]\((5, -3)\)[/tex] and [tex]\((-10, 15)\)[/tex], follow these steps:

1. Calculate the slope (m):
The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((5, -3)\)[/tex] and [tex]\((-10, 15)\)[/tex]:
[tex]\[ m = \frac{15 - (-3)}{-10 - 5} = \frac{15 + 3}{-10 - 5} = \frac{18}{-15} = -\frac{6}{5} \][/tex]

2. Use the point-slope form to determine the equation of the line:
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using one of the points, for example, [tex]\((5, -3)\)[/tex]:
[tex]\[ y - (-3) = -\frac{6}{5}(x - 5) \][/tex]
Simplify this equation:
[tex]\[ y + 3 = -\frac{6}{5}x + \frac{6}{5} \times 5 \][/tex]
[tex]\[ y + 3 = -\frac{6}{5}x + 6 \][/tex]
To express this in the [tex]\(y = mx + b\)[/tex] form, isolate [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{6}{5}x + 6 - 3 \][/tex]
[tex]\[ y = -\frac{6}{5}x + 3 \][/tex]

Therefore, the equation of the line passing through the given points is:
[tex]\[ y = -\frac{6}{5}x + 3 \][/tex]

From the choices provided, the correct answer is:
[tex]\[ \boxed{y = -\frac{6}{5} x + 3} \][/tex]