\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\begin{tabular}{l}
Number of Monthly \\
Payments
\end{tabular} & \multicolumn{9}{|c|}{ Annual Percentage Rate (APR) } \\
\hline
& [tex]$11 \%$[/tex] & [tex]$11.5 \%$[/tex] & [tex]$12 \%$[/tex] & [tex]$12.5 \%$[/tex] & [tex]$13 \%$[/tex] & [tex]$13.5 \%$[/tex] & [tex]$14 \%$[/tex] & [tex]$14.5 \%$[/tex] & [tex]$15 \%$[/tex] \\
\hline
35 & 17.35 & 18.18 & 19.01 & 19.85 & 20.69 & 21.53 & 22.38 & 23.23 & 14.08 \\
\hline
36 & 17.86 & 18.71 & 19.57 & 20.43 & 21.30 & 22.17 & 23.04 & 23.92 & 24.80 \\
\hline
\end{tabular}

Use the table to determine the annual percentage rate for a 36-month loan that charges [tex]$\$[/tex]24.80[tex]$ per every $[/tex]\[tex]$100$[/tex] financed.

a. [tex]$13 \%$[/tex]
b. [tex]$14 \%$[/tex]
c. [tex]$15 \%$[/tex]
d. [tex]$16 \%$[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To find the annual percentage rate (APR) for a 36-month loan that charges [tex]$24.80 per every $[/tex]100 financed, we can refer to the provided table. Here’s the detailed step-by-step process for finding the correct APR:

1. Identify the Target Value: We are interested in the 36-month column value that matches [tex]$24.80. 2. Scan the 36-month Row: Look through the row corresponding to the 36-month loan to find the value of $[/tex]24.80.
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline \text{APR (\%)} & 11 & 11.5 & 12 & 12.5 & 13 & 13.5 & 14 & 14.5 & 15 \\ \hline \text{36 months} & 17.86 & 18.71 & 18.57 & 20.43 & 21.30 & 22.17 & 23.04 & 23.92 & 24.80 \\ \hline \end{array} \][/tex]

3. Find the Matching APR: In the 36-month row, the value [tex]$24.80 corresponds to the column under the 15% APR. 4. Conclusion: The annual percentage rate (APR) for a 36-month loan that charges $[/tex]24.80 per every $100 financed is [tex]\( \boxed{15\%} \)[/tex].

Hence, the correct answer to the question is:
[tex]\[ \text{c. } 15\% \][/tex]