Answer :
Let's solve the problem step by step.
1. Given Information:
- [tex]\( AD = 20 \)[/tex]
- [tex]\( AC = 3x + 4 \)[/tex]
2. Finding [tex]\( x \)[/tex]:
- Since [tex]\( AD = AC + DC \)[/tex] and [tex]\( DC \)[/tex] must be such that the sum equals 20, we can establish the equation where [tex]\( AD = AC \)[/tex] because we need to solve for [tex]\( AC \)[/tex] first.
- Hence, set [tex]\( AD = AC \)[/tex]:
[tex]\[ 20 = 3x + 4 \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ 20 - 4 = 3x \][/tex]
[tex]\[ 16 = 3x \][/tex]
[tex]\[ x = \frac{16}{3} \][/tex]
3. Calculating [tex]\( AC \)[/tex]:
- Substitute [tex]\( x = \frac{16}{3} \)[/tex] back into the expression for [tex]\( AC \)[/tex]:
[tex]\[ AC = 3 \left( \frac{16}{3} \right) + 4 \][/tex]
[tex]\[ AC = 16 + 4 \][/tex]
[tex]\[ AC = 20 \][/tex]
4. Calculating [tex]\( DC \)[/tex]:
- Since [tex]\( AD = AC + DC \)[/tex] and we have found that [tex]\( AC = 20 \)[/tex], then:
[tex]\[ 20 = 20 + DC \][/tex]
[tex]\[ DC = 0 \][/tex]
Therefore:
- The value of [tex]\( x \)[/tex] is [tex]\( \frac{16}{3} \)[/tex].
- The value of [tex]\( AC \)[/tex] is 20.
- The value of [tex]\( DC \)[/tex] is 0.
1. Given Information:
- [tex]\( AD = 20 \)[/tex]
- [tex]\( AC = 3x + 4 \)[/tex]
2. Finding [tex]\( x \)[/tex]:
- Since [tex]\( AD = AC + DC \)[/tex] and [tex]\( DC \)[/tex] must be such that the sum equals 20, we can establish the equation where [tex]\( AD = AC \)[/tex] because we need to solve for [tex]\( AC \)[/tex] first.
- Hence, set [tex]\( AD = AC \)[/tex]:
[tex]\[ 20 = 3x + 4 \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ 20 - 4 = 3x \][/tex]
[tex]\[ 16 = 3x \][/tex]
[tex]\[ x = \frac{16}{3} \][/tex]
3. Calculating [tex]\( AC \)[/tex]:
- Substitute [tex]\( x = \frac{16}{3} \)[/tex] back into the expression for [tex]\( AC \)[/tex]:
[tex]\[ AC = 3 \left( \frac{16}{3} \right) + 4 \][/tex]
[tex]\[ AC = 16 + 4 \][/tex]
[tex]\[ AC = 20 \][/tex]
4. Calculating [tex]\( DC \)[/tex]:
- Since [tex]\( AD = AC + DC \)[/tex] and we have found that [tex]\( AC = 20 \)[/tex], then:
[tex]\[ 20 = 20 + DC \][/tex]
[tex]\[ DC = 0 \][/tex]
Therefore:
- The value of [tex]\( x \)[/tex] is [tex]\( \frac{16}{3} \)[/tex].
- The value of [tex]\( AC \)[/tex] is 20.
- The value of [tex]\( DC \)[/tex] is 0.